Difference between revisions of "CoE 197U S2 AY 2022-2023"

From Microlab Classes
Jump to navigation Jump to search
 
(44 intermediate revisions by 2 users not shown)
Line 22: Line 22:
 
| style="text-align:center;" | 0
 
| style="text-align:center;" | 0
 
|  
 
|  
* [[CoE 197U Orientation | Orientation]]
+
''Feb 13-18''
 +
* CoE 197U Orientation
 
|  
 
|  
 
* Set class expectations, discuss grading system
 
* Set class expectations, discuss grading system
 
* Introduction to CoE 197U
 
* Introduction to CoE 197U
 
|  
 
|  
* Syllabus [ PDF]
+
* Syllabus [PDF]
 
|
 
|
* [[CoE197U-A1.1]]: IC Fabrication and Scaling
+
* Lab orientation
* [https://uvle.upd.edu.ph/mod/resource/view.php?id=144085 Lab 01]: Introduction to LTSpice
 
 
|-
 
|-
 
| style="text-align:center;" | 1
 
| style="text-align:center;" | 1
 
|  
 
|  
 +
''Feb 20-25''
 
* [[CoE 197U Introduction | Introduction]]
 
* [[CoE 197U Introduction | Introduction]]
 
* [[CoE 197U IC Fabrication | IC Fabrication]]
 
* [[CoE 197U IC Fabrication | IC Fabrication]]
Line 45: Line 46:
 
|
 
|
 
* [[CoE197U-A1.1]]: IC Fabrication and Scaling
 
* [[CoE197U-A1.1]]: IC Fabrication and Scaling
* [https://uvle.upd.edu.ph/mod/resource/view.php?id=144085 Lab 01]: Introduction to LTSpice
+
* [https://drive.google.com/file/d/1GzSEjBMqHtM1USbNVVZdOOy8eDpJhXJ6/view?usp=sharing Lab 01]: Introduction to Digital IC Design (MOS Characterization)
 
|-
 
|-
 
| style="text-align:center;" | 2
 
| style="text-align:center;" | 2
 
|  
 
|  
 +
''Mar 6-11''
 
* [[CoE 197U The MOS Transistor | The MOS Transistor]]
 
* [[CoE 197U The MOS Transistor | The MOS Transistor]]
 
* [[CoE 197U The MOS Switch | The MOS Switch]]
 
* [[CoE 197U The MOS Switch | The MOS Switch]]
Line 56: Line 58:
 
* Determine key CMOS inverter metrics and understand their significance in the analysis and design process.
 
* Determine key CMOS inverter metrics and understand their significance in the analysis and design process.
 
|  
 
|  
* Slides: MOS [ PDF]
+
* Slides: MOS [[https://drive.google.com/file/d/1H-aBeApfPlgFNqAMoMqIDZSbyDmwHFPf/view?usp=sharing PDF]]
* Slides: CMOS Inverter [ PDF]
+
* Slides: CMOS Inverter [[https://drive.google.com/file/d/1H4Dt_YkLFLWvAVurp7ZxcXbJAPw6frR5/view?usp=sharing PDF]]
 +
* Recording: Module Discussion [[https://drive.google.com/file/d/1H5yoNWBSQfp_TSfS6voFygigZTX6G97F/view?usp=sharing Video]]
 
|
 
|
* [https://uvle.upd.edu.ph/mod/resource/view.php?id=144093 Lab 02]: The MOSFET Switch and The Inverter
+
* [https://drive.google.com/file/d/1gVGg0lAjCFwDzgUzz4TIbXgXCw64yl6o/view?usp=sharing Lab 02]: CMOS Inverter
 
|-
 
|-
 
| style="text-align:center;" | 3
 
| style="text-align:center;" | 3
 
|  
 
|  
 +
''Mar 13-18''
 
* [[ CoE 197U CMOS Gates | Static CMOS Gates ]]
 
* [[ CoE 197U CMOS Gates | Static CMOS Gates ]]
 
* [[ CoE 197U Logical Effort | Logical Effort and Delay ]]
 
* [[ CoE 197U Logical Effort | Logical Effort and Delay ]]
Line 70: Line 74:
 
* Design multistage networks for optimal speed
 
* Design multistage networks for optimal speed
 
|  
 
|  
* Slides: CMOS Gates [ PDF]
+
* Slides: CMOS Gates [[https://drive.google.com/file/d/10McCC1megDnllbIMj7rdtBlyZB84QVBh/view?usp=sharing PDF]]
* Slides: Logical Effort [ PDF]
+
* Slides: Logical Effort [[https://drive.google.com/file/d/10dGqE_NolixkYaL7aUWMlwPaIILprEFg/view?usp=sharing PDF]]
 +
* Additional Slides: LE Example [[https://drive.google.com/file/d/1IvgU-3yIFlPBbj0PAdfdnyrPYkas3qnf/view?usp=sharing PDF]]
 
|
 
|
* [[CoE197U-A3.1]]: Logical Effort
+
<!-- * [[CoE197U-A3.1]]: Logical Effort -->
* [https://uvle.upd.edu.ph/mod/resource/view.php?id=144103 Lab 03]: Inverter Characteristics, Ring Oscillator, and Buffers
+
* [https://drive.google.com/file/d/1IgdNWWsXWqQegJP914KjZ7m4zVZ5LEQo/view?usp=sharing HW] Module 3 HW (final extension May 5)
 +
* [https://drive.google.com/file/d/1bHTAunfnUid3HUrl9oINJhUVqcxf2HUo/view?usp=sharing Lab 03]: Static CMOS Gates
 
|-
 
|-
 
| style="text-align:center;" | 4
 
| style="text-align:center;" | 4
 
|  
 
|  
 +
''Mar 20-25''
 
* [[ CoE 197U Power and Energy | Power and Energy ]]
 
* [[ CoE 197U Power and Energy | Power and Energy ]]
* [[ CoE 197U Interconnects | Interconnects ]]
+
* Optional: [[ CoE 197U Interconnects | Interconnects ]]
 
|  
 
|  
 
* Identify sources of power and energy consumption in digital circuits
 
* Identify sources of power and energy consumption in digital circuits
Line 85: Line 92:
 
* Model interconnects as parasitic resistances and capacitances and estimate corresponding delay
 
* Model interconnects as parasitic resistances and capacitances and estimate corresponding delay
 
|  
 
|  
* Slides: Power and Energy [ PDF]
+
* Slides: Power and Energy [[https://drive.google.com/file/d/1IiXkv95fMswIMGUNvRdeh4gd0mv32zyT/view?usp=sharing PDF]]
* Slides: Interconnects [ PDF]
+
* Slides: Interconnects [PDF]
 
|
 
|
* [https://uvle.upd.edu.ph/mod/resource/view.php?id=199635 Lab 04] : Static Logic Gates and Logical Effort
+
* [https://drive.google.com/file/d/1d32Az_8MDIgj5OxfrF2ouxEzzyTpOGb3/view?usp=sharing Lab 04]: Delay Optimization and Considerations in Digital Design
 
|-
 
|-
 
| style="text-align:center;" | 5
 
| style="text-align:center;" | 5
 
|
 
|
 +
''Mar 20-25''
 
* [[ CoE 197U Memory | Memory Elements ]]
 
* [[ CoE 197U Memory | Memory Elements ]]
 
* [[ CoE 197U Timing | Timing ]]
 
* [[ CoE 197U Timing | Timing ]]
Line 99: Line 107:
 
* Design and characterize basic memory elements
 
* Design and characterize basic memory elements
 
|  
 
|  
* Slides: Memory [ PDF]
+
* Slides: Memory [[https://drive.google.com/file/d/1Im5QU8FoXTTAIr7ah499VN_LVsfKY0uq/view?usp=sharing PDF]]
* Slides: Timing [ PDF]
+
* Slides: Timing [[https://drive.google.com/file/d/1IlpWLKPaWKP5bqpQP_tKlZuypvrjcdcI/view?usp=sharing PDF]]
 +
* Slides: Optional materials [[https://drive.google.com/file/d/1IkQsL_U9BSwbP1cwL5ntbUB3Tawk_qYM/view?usp=sharing PDF]]
 +
* Video: Module discussion [[https://drive.google.com/file/d/1IwDyzqReLLr5BP8YmKWSXs1daNkBoUMw/view?usp=sharing Link]]
 +
* 2019 Exam: [[https://drive.google.com/file/d/11nFrLUBhYL-glsAPQCNCBJ1gmKH9Nne6/view?usp=sharing PDF]]
 
|
 
|
* [[CoE197U-A5.1]]: Timing
+
<!-- * [[CoE197U-A5.1]]: Timing -->
* [https://uvle.upd.edu.ph/mod/resource/view.php?id=199751 Lab 05] : Power Delay Product and Memory Elements
+
* [https://drive.google.com/file/d/1o2jk_-bh_OMQUXVtHpMyHa2e127UavZz/view?usp=sharing Lab (Optional)]: SRAM
 
|-
 
|-
 
| style="text-align:center;" colspan="5" | ''Part II: Analog Integrated Circuits''
 
| style="text-align:center;" colspan="5" | ''Part II: Analog Integrated Circuits''
Line 109: Line 120:
 
| style="text-align:center;" | 6
 
| style="text-align:center;" | 6
 
|
 
|
 +
''Apr 17-22''
 
* MOS Amplifiers: DC and AC Analysis
 
* MOS Amplifiers: DC and AC Analysis
 
|
 
|
Line 117: Line 129:
 
* Identify the appropriate application of a MOS amplifier topology based on its two-port parameters.
 
* Identify the appropriate application of a MOS amplifier topology based on its two-port parameters.
 
|
 
|
* Slides: DC and AC Analysis [https://drive.google.com/file/d/1J5bNkvjyJ5dF0HWpcLABiQq9WOlnyqje/view?usp=sharing PDF]  
+
* Slides: DC and AC Analysis [[https://drive.google.com/file/d/1J5bNkvjyJ5dF0HWpcLABiQq9WOlnyqje/view?usp=sharing PDF]]
 
* Videos: [https://www.youtube.com/watch?v=4tEYeFiYwWI&list=PL4if6jkKNTz9RgsB4Gq_g374b4oLYOAeH&index=1 Part 1] [https://www.youtube.com/watch?v=lD7ejAl4Ue4&list=PL4if6jkKNTz9RgsB4Gq_g374b4oLYOAeH&index=2 Part 2]
 
* Videos: [https://www.youtube.com/watch?v=4tEYeFiYwWI&list=PL4if6jkKNTz9RgsB4Gq_g374b4oLYOAeH&index=1 Part 1] [https://www.youtube.com/watch?v=lD7ejAl4Ue4&list=PL4if6jkKNTz9RgsB4Gq_g374b4oLYOAeH&index=2 Part 2]
 
|
 
|
* Lab 06: Introduction to Analog Design
+
* [https://drive.google.com/file/d/1qJUb3iom66Uo02n5bMg2TonGcRE-OKIU/view?usp=sharing Lab 05]: Introduction to Analog IC Design (MOS Characterization)
 
|-
 
|-
 
| style="text-align:center;" | 7
 
| style="text-align:center;" | 7
 
|
 
|
 +
''Apr 24-29''
 
* MOS Amplifiers: Frequency Response
 
* MOS Amplifiers: Frequency Response
 
|
 
|
Line 130: Line 143:
 
* Estimate the dominant pole using ZVTCA.
 
* Estimate the dominant pole using ZVTCA.
 
|
 
|
* Slides: Frequency Response [https://drive.google.com/file/d/1IA9OF95XS4FV852IuIpbY5iy1KquA4VI/view?usp=sharing PDF]  
+
* Slides: Frequency Response [[https://drive.google.com/file/d/1IA9OF95XS4FV852IuIpbY5iy1KquA4VI/view?usp=sharing PDF]]
 
* Videos: [https://www.youtube.com/watch?v=1AzlCV_AXgg&list=PL4if6jkKNTz9RgsB4Gq_g374b4oLYOAeH&index=3 Part 1] [https://www.youtube.com/watch?v=I3I6CBye0rU&list=PL4if6jkKNTz9RgsB4Gq_g374b4oLYOAeH&index=4 Part 2] [https://www.youtube.com/watch?v=55w6EXRSR1M&list=PL4if6jkKNTz9RgsB4Gq_g374b4oLYOAeH&index=5 Part 3]
 
* Videos: [https://www.youtube.com/watch?v=1AzlCV_AXgg&list=PL4if6jkKNTz9RgsB4Gq_g374b4oLYOAeH&index=3 Part 1] [https://www.youtube.com/watch?v=I3I6CBye0rU&list=PL4if6jkKNTz9RgsB4Gq_g374b4oLYOAeH&index=4 Part 2] [https://www.youtube.com/watch?v=55w6EXRSR1M&list=PL4if6jkKNTz9RgsB4Gq_g374b4oLYOAeH&index=5 Part 3]
 
|
 
|
* Lab 07: CS Amplifier and Frequency Response
+
* [https://drive.google.com/file/d/1qxZYVYwmhjmUJH1Y5JeKc9VQTlU6Y3Oh/view?usp=sharing Lab 06]: Common-Source Amplifier with Resistive Load
 
|-
 
|-
 
| style="text-align:center;" | 8
 
| style="text-align:center;" | 8
 
|
 
|
 +
''May 8-13''
 
* Current Sources
 
* Current Sources
 
* High-Swing Current Sources
 
* High-Swing Current Sources
Line 144: Line 158:
 
* Analyze High-swing current sources
 
* Analyze High-swing current sources
 
|  
 
|  
* Slides: Current Sources [https://drive.google.com/file/d/19jU1NupCk66ta6Q3tJyWFYDUagqaZCQs/view?usp=sharing PDF]
+
* Slides: Current Sources [[https://drive.google.com/file/d/19jU1NupCk66ta6Q3tJyWFYDUagqaZCQs/view?usp=sharing PDF]] [[https://drive.google.com/file/d/1LQBAYGi4V2OVDtcDEwU78ianL_LD4PTk/view?usp=sharing Annotated PDF]]
* Slides: High-Swing Current Sources [https://drive.google.com/file/d/15dsEE2jcVoUNasZmvCOlewN77UxfOieB/view?usp=sharing PDF]
+
* Slides: High-Swing Current Sources [[https://drive.google.com/file/d/15dsEE2jcVoUNasZmvCOlewN77UxfOieB/view?usp=sharing PDF]] [[https://drive.google.com/file/d/1jtwEvsdZ9uWTYQ969RcQXfwyGtOSCOSL/view?usp=sharing Annotated PDF]]
 +
* Videos: [https://drive.google.com/file/d/1vxGdeB_VRUoyA5G4XotYUWxmBPFhXjyN/view?usp=sharing Part 1] [https://drive.google.com/file/d/11cjEGTWBCXKZ92Op4luxM3MMGThBXPbH/view?usp=sharing Part 2]
 
|
 
|
* Lab 08: Current Mirrors and CS Amplifiers with Active Loads
+
* [https://drive.google.com/file/d/1rsYqGJ-TgIk8yMkPa9z_3Q-l3CnkicFH/view?usp=sharing Lab 07]: Current Sources
 
|-
 
|-
 
| style="text-align:center;" | 9
 
| style="text-align:center;" | 9
 
|  
 
|  
 +
''May 15-20''
 
* [[ CoE 197U MOS Differential Pairs | MOS Differential Pairs ]]
 
* [[ CoE 197U MOS Differential Pairs | MOS Differential Pairs ]]
 
* [[ CoE 197U Two-Stage MOS Operational Transconductance Amplifiers | Two-Stage MOS OTA ]]
 
* [[ CoE 197U Two-Stage MOS Operational Transconductance Amplifiers | Two-Stage MOS OTA ]]
Line 159: Line 175:
 
* Analyze Miller Operational Amplifiers
 
* Analyze Miller Operational Amplifiers
 
|  
 
|  
* Slides: MOS Differential Pairs [https://drive.google.com/file/d/10p4T9_5qMXiXPeVU0B0yHmzmtTabiQ43/view?usp=sharing PDF]
+
* Slides: MOS Differential Pairs [[https://drive.google.com/file/d/10p4T9_5qMXiXPeVU0B0yHmzmtTabiQ43/view?usp=sharing PDF]]
* Slides: Miller Op-Amp [https://drive.google.com/file/d/1ARDhJZ5SXZ9aMOgDCBVHqwkQAiG0FLsn/view?usp=sharing PDF]
+
* Slides: Miller Op-Amp [[https://drive.google.com/file/d/1ARDhJZ5SXZ9aMOgDCBVHqwkQAiG0FLsn/view?usp=sharing PDF]]
 +
* Videos: [https://drive.google.com/file/d/1XRNRW5x2GmhDsvfyZ-iOt5JvisZaJ-bl/view?usp=sharing Part 1] [https://drive.google.com/file/d/1zOlnA7GNCBQdeKf0cumAQtAe31QDAqoE/view?usp=sharing Part 2]
 
|
 
|
* Lab 09: Differential Pairs and Two-Stage MOS OTA
+
* [https://drive.google.com/file/d/1s5JjDhKb_ABXVH0q5yfaU6gc7DEHRKwt/view?usp=sharing Lab 08]: Differential Amplifier
 
|-
 
|-
 
| style="text-align:center;" | 10
 
| style="text-align:center;" | 10
 
|
 
|
 +
''May 22-27''
 
* Folded Cascode Operational Transconductance Amplifiers
 
* Folded Cascode Operational Transconductance Amplifiers
 
|  
 
|  
Line 172: Line 190:
 
* Explain how to design a folded cascode OTA.
 
* Explain how to design a folded cascode OTA.
 
|  
 
|  
* Slides: Folded Cascode [https://drive.google.com/file/d/1Tg0ZyYzh-rQPGdOqmonEXNXNYPkhJ-aW/view?usp=sharing PDF]
+
* Slides: Folded Cascode [[https://drive.google.com/file/d/1Tg0ZyYzh-rQPGdOqmonEXNXNYPkhJ-aW/view?usp=sharing PDF]]
 
|
 
|
* Lab 10: (Project) Design of a Folded Cascode OTA
+
* [https://drive.google.com/file/d/1p-kByLuiUuwYC7jlVHQ0AdCqLzhQIvzx/view?usp=sharing Lab 09]: Design Problem
 
|-
 
|-
 
|}
 
|}

Latest revision as of 11:02, 16 June 2023

  • Introduction to Analog and Digital Integrated Circuit Design
  • Semester Offered: 2nd semester
  • Course Credit: Lecture: 3 units (2 units lecture, 1 unit lab)

Catalog Description

IC Fabrication. CMOS gates. Logical Effort. Interconnect. Memory Elements. MOS Amplifiers. Current Sources. Differential Amplifiers. Operational Transconductance Amplifiers.

Pre-req: EEE 41 or EEE 131. 5h (2 lec, 3 lab) 3 u.

Syllabus

Module Topics Outcomes Resources Activities
Part I: Digital Integrated Circuits
0

Feb 13-18

  • CoE 197U Orientation
  • Set class expectations, discuss grading system
  • Introduction to CoE 197U
  • Syllabus [PDF]
  • Lab orientation
1

Feb 20-25

  • Identify the key characteristics and non-idealities of a CMOS fabrication process.
  • Analyze how these key characteristics and non-idealities change the characteristics of the devices that will be built on it.
  • CoE197U-A1.1: IC Fabrication and Scaling
  • Lab 01: Introduction to Digital IC Design (MOS Characterization)
2

Mar 6-11

  • Simplify the analysis of a CMOS inverter using switch-level transistor models.
  • Determine key CMOS inverter metrics and understand their significance in the analysis and design process.
  • Slides: MOS [PDF]
  • Slides: CMOS Inverter [PDF]
  • Recording: Module Discussion [Video]
3

Mar 13-18

  • Design CMOS static gates
  • Estimate delays of cascaded logic gates
  • Design multistage networks for optimal speed
  • Slides: CMOS Gates [PDF]
  • Slides: Logical Effort [PDF]
  • Additional Slides: LE Example [PDF]
  • HW Module 3 HW (final extension May 5)
  • Lab 03: Static CMOS Gates
4

Mar 20-25

  • Identify sources of power and energy consumption in digital circuits
  • Evaluate energy efficient techniques for digital logic using defined metrics
  • Model interconnects as parasitic resistances and capacitances and estimate corresponding delay
  • Slides: Power and Energy [PDF]
  • Slides: Interconnects [PDF]
  • Lab 04: Delay Optimization and Considerations in Digital Design
5

Mar 20-25

  • Enumerate and distinguish different memory element classifications
  • Identify timing parameters relevant to memory elements and their effects on sequential circuit timing
  • Design and characterize basic memory elements
  • Slides: Memory [PDF]
  • Slides: Timing [PDF]
  • Slides: Optional materials [PDF]
  • Video: Module discussion [Link]
  • 2019 Exam: [PDF]
Part II: Analog Integrated Circuits
6

Apr 17-22

  • MOS Amplifiers: DC and AC Analysis
  • Determine the DC operating point of MOS amplifiers.
  • Extract the MOS small-signal parameters depending on the DC operating point.
  • Analyze MOS amplifiers in the AC and DC domain.
  • Derive the two-port network representation of MOS amplifiers.
  • Identify the appropriate application of a MOS amplifier topology based on its two-port parameters.
  • Lab 05: Introduction to Analog IC Design (MOS Characterization)
7

Apr 24-29

  • MOS Amplifiers: Frequency Response
  • Analyze MOS amplifiers in the frequency domain.
  • Sketch the Bode plots of the transfer function.
  • Estimate the dominant pole using ZVTCA.
  • Lab 06: Common-Source Amplifier with Resistive Load
8

May 8-13

  • Current Sources
  • High-Swing Current Sources
  • Understand ideal and real sources
  • Analyze MOS simple current mirror
  • Analyze High-swing current sources
9

May 15-20

  • Understand differential circuits
  • Analyze MOS differential pairs
  • Understand operational amplifier operation
  • Analyze Miller Operational Amplifiers
  • Lab 08: Differential Amplifier
10

May 22-27

  • Folded Cascode Operational Transconductance Amplifiers
  • Identify the different stages in a folded cascode OTA.
  • Determine the components and/or parameters that affect the DC operating point of a folded cascode OTA.
  • Explain how to design a folded cascode OTA.
  • Slides: Folded Cascode [PDF]

References

  • Rabaey, Chandrakasan, Nikolic, Digital Integrated Circuits, 2ed., Pearson 2002.
  • Gray, Hurst, Lewis, Meyer, Analysis & Design of Analog Integrated Circuits, Wiley 2001.
  • Johns, Martin, Analog Integrated Circuit Design, Wiley 1997.
  • Design of Analog CMOS Integrated Circuits, Behzad Razavi, McGraw-Hill, 2000.
  • R. Jacob Baker, Circuit Design, Layout,and Simulation, 4ed., IEEE Press 2019.