Difference between revisions of "CoE 197U"
Jump to navigation
Jump to search
(Created page with "* '''Introduction to Analog and Digital Integrated Circuit Design''' * Semester Offered: 2nd semester * Course Credit: Lecture: 3 units (2 units lecture, 1 unit lab) == Catal...") |
|||
(56 intermediate revisions by 6 users not shown) | |||
Line 4: | Line 4: | ||
== Catalog Description == | == Catalog Description == | ||
− | IC Fabrication. CMOS gates. Logical Effort. Interconnect. Memory Elements. MOS Amplifiers. Current Sources. Differential Amplifiers. Operational Transconductance Amplifiers. Pre-req: EEE 41 or EEE 131. | + | IC Fabrication. CMOS gates. Logical Effort. Interconnect. Memory Elements. MOS Amplifiers. Current Sources. Differential Amplifiers. Operational Transconductance Amplifiers. Pre-req: EEE 41 or EEE 131. 5h (2 lec, 3 lab) 3 u. |
== Syllabus == | == Syllabus == | ||
Line 15: | Line 15: | ||
! scope="col"| Resources | ! scope="col"| Resources | ||
! scope="col"| Activities | ! scope="col"| Activities | ||
+ | |- | ||
+ | | style="text-align:center;" colspan="5" | ''Part I: Digital Integrated Circuits'' | ||
|- | |- | ||
| style="text-align:center;" | 1 | | style="text-align:center;" | 1 | ||
| | | | ||
− | * Introduction | + | * [[CoE 197U Introduction | Introduction]] |
− | * IC Fabrication | + | * [[CoE 197U IC Fabrication | IC Fabrication]] |
− | * Scaling | + | * [[CoE 197U Scaling | Scaling]] |
| | | | ||
+ | * Identify the key characteristics and non-idealities of a CMOS fabrication process. | ||
+ | * Analyze how these key characteristics and non-idealities change the characteristics of the devices that will be built on it. | ||
| | | | ||
+ | * Video: Silicon Run I (1996) [https://www.youtube.com/watch?v=3XTWXRj24GM Youtube link] | ||
+ | * Paolo Gargini's [https://www.dropbox.com/s/6eskh6bwdcuzpsa/1507_11_Paolo%20Overview_Out.pdf presentation] from the 2015 [http://www.itrs2.net/ International Technology Roadmap for Semiconductors] (ITRS) Summer Meeting. | ||
| | | | ||
+ | * [[CoE197U-A1.1]]: IC Fabrication and Scaling | ||
+ | * [https://drive.google.com/drive/folders/1PFmtjlx1usOf73PzcLBfkcS8VhDb2Pz8?usp=sharing Lab 00]: Introduction to LTspice | ||
|- | |- | ||
| style="text-align:center;" | 2 | | style="text-align:center;" | 2 | ||
| | | | ||
− | * The MOS Switch | + | * [[CoE 197U The MOS Transistor | The MOS Transistor]] |
− | * The CMOS Inverter | + | * [[CoE 197U The MOS Switch | The MOS Switch]] |
+ | * [[CoE 197U The CMOS Inverter | The CMOS Inverter]] | ||
| | | | ||
+ | * Simplify the analysis of a CMOS inverter using switch-level transistor models. | ||
+ | * Determine key CMOS inverter metrics and understand their significance in the analysis and design process. | ||
| | | | ||
| | | | ||
+ | * [https://drive.google.com/drive/folders/1lW3RflMSI0DUz3Rb2CCvzhABtaKJXQRt?usp=sharing Lab 01]: The MOSFET Switch and The Inverter | ||
|- | |- | ||
| style="text-align:center;" | 3 | | style="text-align:center;" | 3 | ||
| | | | ||
− | * Static CMOS Gates | + | * [[ CoE 197U CMOS Gates | Static CMOS Gates ]] |
− | * Logical Effort | + | * [[ CoE 197U Logical Effort | Logical Effort and Delay ]] |
| | | | ||
+ | * Design CMOS static gates | ||
+ | * Estimate delays of cascaded logic gates | ||
+ | * Design multistage networks for optimal speed | ||
| | | | ||
+ | * Slides: CMOS Gates [https://drive.google.com/file/d/1Ohu6h00q8o3mN6PfKG0_ArZ7F97qvOji/view?usp=sharing PDF] | ||
+ | * Slides: Logical Effort [https://drive.google.com/file/d/1OmX857DUfy0X_asE1DKYCIrr9TwwMMvX/view?usp=sharing PDF] | ||
| | | | ||
+ | * [[CoE197U-A3.1]]: Logical Effort | ||
+ | * [https://drive.google.com/drive/folders/1IaQsQZEfm57A4HbENHF_BZrPzi_iwLzQ?usp=sharing Lab 02]: Inverter Characteristics, Ring Oscillator, and Buffers | ||
|- | |- | ||
| style="text-align:center;" | 4 | | style="text-align:center;" | 4 | ||
| | | | ||
− | * Power | + | * [[ CoE 197U Power and Energy | Power and Energy ]] |
− | * | + | * [[ CoE 197U Interconnects | Interconnects ]] |
| | | | ||
+ | * Identify sources of power and energy consumption in digital circuits | ||
+ | * Evaluate energy efficient techniques for digital logic using defined metrics | ||
+ | * Model interconnects as parasitic resistances and capacitances and estimate corresponding delay | ||
| | | | ||
+ | * Slides: Power and Energy [https://drive.google.com/file/d/1OpKOIEaYL6B4tIJ4WBeFDanvIL5H-3RE/view?usp=sharing PDF] | ||
+ | * Slides: Interconnects [https://drive.google.com/file/d/1Or0KnHb3v0awBcXZHd8CfN2oEP5l3cRj/view?usp=sharing PDF] | ||
| | | | ||
+ | * [https://drive.google.com/drive/folders/1HtOJQGC0XJqgDrctXn14LnqV1bDGPJv4?usp=sharing Lab 03] : Static Logic Gates and Power-Delay Product | ||
|- | |- | ||
| style="text-align:center;" | 5 | | style="text-align:center;" | 5 | ||
| | | | ||
− | * Memory Elements | + | * [[ CoE 197U Memory | Memory Elements ]] |
− | * Timing | + | * [[ CoE 197U Timing | Timing ]] |
| | | | ||
+ | * Enumerate and distinguish different memory element classifications | ||
+ | * Identify timing parameters relevant to memory elements and their effects on sequential circuit timing | ||
+ | * Design and characterize basic memory elements | ||
| | | | ||
+ | * Slides: Memory [https://drive.google.com/file/d/1PEUGraNKqPlbqWAljKm1onDU_kUUpk2S/view?usp=sharing PDF] | ||
+ | * Slides: Timing [https://drive.google.com/file/d/1PEg80QK6j8bnSphWYS9hCrJ-gEOLGuyz/view?usp=sharing PDF] | ||
+ | * Slides: Timing Discussion [https://drive.google.com/file/d/1TvtFsCeWpNUtuFKQrUlx80oc0gTxrYhF/view?usp=sharing PDF] | ||
| | | | ||
+ | * [[CoE197U-A5.1]]: Timing | ||
+ | * [https://drive.google.com/drive/folders/1blJPdFy2G7IbzKCFb-2kXf1_vAcJGQ9O?usp=sharing Lab 04] : Basic Memory Devices | ||
+ | |- | ||
+ | | style="text-align:center;" colspan="5" | ''Part II: Analog Integrated Circuits'' | ||
|- | |- | ||
| style="text-align:center;" | 6 | | style="text-align:center;" | 6 | ||
| | | | ||
− | * MOS Amplifiers: DC Analysis | + | * MOS Amplifiers: DC and AC Analysis |
− | * MOS | + | | |
+ | * Determine the DC operating point of MOS amplifiers. | ||
+ | * Extract the MOS small-signal parameters depending on the DC operating point. | ||
+ | * Analyze MOS amplifiers in the AC and DC domain. | ||
+ | * Derive the two-port network representation of MOS amplifiers. | ||
+ | * Identify the appropriate application of a MOS amplifier topology based on its two-port parameters. | ||
| | | | ||
− | + | * Slides: DC and AC Analysis [https://drive.google.com/file/d/1J5bNkvjyJ5dF0HWpcLABiQq9WOlnyqje/view?usp=sharing PDF] | |
+ | * Videos: [https://www.youtube.com/watch?v=4tEYeFiYwWI&list=PL4if6jkKNTz9RgsB4Gq_g374b4oLYOAeH&index=1 Part 1] [https://www.youtube.com/watch?v=lD7ejAl4Ue4&list=PL4if6jkKNTz9RgsB4Gq_g374b4oLYOAeH&index=2 Part 2] | ||
| | | | ||
|- | |- | ||
| style="text-align:center;" | 7 | | style="text-align:center;" | 7 | ||
| | | | ||
− | * | + | * MOS Amplifiers: Frequency Response |
− | * | + | | |
− | | | + | * Analyze MOS amplifiers in the frequency domain. |
− | + | * Sketch the Bode plots of the transfer function. | |
+ | * Estimate the dominant pole using ZVTCA. | ||
+ | | | ||
+ | * Slides: Frequency Response [https://drive.google.com/file/d/1IA9OF95XS4FV852IuIpbY5iy1KquA4VI/view?usp=sharing PDF] | ||
+ | * Videos: [https://www.youtube.com/watch?v=1AzlCV_AXgg&list=PL4if6jkKNTz9RgsB4Gq_g374b4oLYOAeH&index=3 Part 1] [https://www.youtube.com/watch?v=I3I6CBye0rU&list=PL4if6jkKNTz9RgsB4Gq_g374b4oLYOAeH&index=4 Part 2] [https://www.youtube.com/watch?v=55w6EXRSR1M&list=PL4if6jkKNTz9RgsB4Gq_g374b4oLYOAeH&index=5 Part 3] | ||
| | | | ||
|- | |- | ||
| style="text-align:center;" | 8 | | style="text-align:center;" | 8 | ||
+ | | | ||
+ | * Current Sources | ||
+ | * High-Swing Current Sources | ||
| | | | ||
− | * MOS | + | * Understand ideal and real sources |
− | + | * Analyze MOS simple current mirror | |
+ | * Analyze High-swing current sources | ||
| | | | ||
+ | * Slides: Current Sources [https://drive.google.com/file/d/19jU1NupCk66ta6Q3tJyWFYDUagqaZCQs/view?usp=sharing PDF] | ||
+ | * Slides: High-Swing Current Sources [https://drive.google.com/file/d/15dsEE2jcVoUNasZmvCOlewN77UxfOieB/view?usp=sharing PDF] | ||
| | | | ||
|- | |- | ||
| style="text-align:center;" | 9 | | style="text-align:center;" | 9 | ||
− | |||
− | |||
| | | | ||
+ | * [[ CoE 197U MOS Differential Pairs | MOS Differential Pairs ]] | ||
+ | * [[ CoE 197U Two-Stage MOS Operational Transconductance Amplifiers | Two-Stage MOS OTA ]] | ||
+ | | | ||
+ | * Understand differential circuits | ||
+ | * Analyze MOS differential pairs | ||
+ | * Understand operational amplifier operation | ||
+ | * Analyze Miller Operational Amplifiers | ||
| | | | ||
+ | * Slides: MOS Differential Pairs [https://drive.google.com/file/d/10p4T9_5qMXiXPeVU0B0yHmzmtTabiQ43/view?usp=sharing PDF] | ||
+ | * Slides: Miller Op-Amp [https://drive.google.com/file/d/1ARDhJZ5SXZ9aMOgDCBVHqwkQAiG0FLsn/view?usp=sharing PDF] | ||
| | | | ||
|- | |- | ||
Line 91: | Line 149: | ||
* Folded Cascode Operational Transconductance Amplifiers | * Folded Cascode Operational Transconductance Amplifiers | ||
| | | | ||
+ | * Identify the different stages in a folded cascode OTA. | ||
+ | * Determine the components and/or parameters that affect the DC operating point of a folded cascode OTA. | ||
+ | * Explain how to design a folded cascode OTA. | ||
| | | | ||
− | + | * Slides: Folded Cascode [https://drive.google.com/file/d/1Tg0ZyYzh-rQPGdOqmonEXNXNYPkhJ-aW/view?usp=sharing PDF] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
|- | |- | ||
Line 125: | Line 163: | ||
* Johns, Martin, Analog Integrated Circuit Design, Wiley 1997. | * Johns, Martin, Analog Integrated Circuit Design, Wiley 1997. | ||
* Design of Analog CMOS Integrated Circuits, Behzad Razavi, McGraw-Hill, 2000. | * Design of Analog CMOS Integrated Circuits, Behzad Razavi, McGraw-Hill, 2000. | ||
+ | * R. Jacob Baker, Circuit Design, Layout,and Simulation, 4ed., IEEE Press 2019. |
Latest revision as of 18:09, 7 May 2021
- Introduction to Analog and Digital Integrated Circuit Design
- Semester Offered: 2nd semester
- Course Credit: Lecture: 3 units (2 units lecture, 1 unit lab)
Catalog Description
IC Fabrication. CMOS gates. Logical Effort. Interconnect. Memory Elements. MOS Amplifiers. Current Sources. Differential Amplifiers. Operational Transconductance Amplifiers. Pre-req: EEE 41 or EEE 131. 5h (2 lec, 3 lab) 3 u.
Syllabus
Module | Topics | Outcomes | Resources | Activities |
---|---|---|---|---|
Part I: Digital Integrated Circuits | ||||
1 |
|
|
| |
2 |
|
| ||
3 |
|
| ||
4 |
|
| ||
5 |
|
| ||
Part II: Analog Integrated Circuits | ||||
6 |
|
|
||
7 |
|
|
||
8 |
|
|
||
9 |
|
|||
10 |
|
|
|
References
- Rabaey, Chandrakasan, Nikolic, Digital Integrated Circuits, 2ed., Pearson 2002.
- Gray, Hurst, Lewis, Meyer, Analysis & Design of Analog Integrated Circuits, Wiley 2001.
- Johns, Martin, Analog Integrated Circuit Design, Wiley 1997.
- Design of Analog CMOS Integrated Circuits, Behzad Razavi, McGraw-Hill, 2000.
- R. Jacob Baker, Circuit Design, Layout,and Simulation, 4ed., IEEE Press 2019.