Difference between revisions of "EE 229"
Jump to navigation
Jump to search
(36 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
Introduction to RF and wireless technology. Characteristics of passive devices at RF. High-frequency amplifier design. Analysis of distortion in amplifiers. Low-noise amplifiers and mixers. Oscillators. Frequency synthesizers. Power amplifiers. Phased-locked loops. Modulators and demodulators. Transceiver architectures. Prereq: EE 220. 3 u. | Introduction to RF and wireless technology. Characteristics of passive devices at RF. High-frequency amplifier design. Analysis of distortion in amplifiers. Low-noise amplifiers and mixers. Oscillators. Frequency synthesizers. Power amplifiers. Phased-locked loops. Modulators and demodulators. Transceiver architectures. Prereq: EE 220. 3 u. | ||
− | == | + | == Syllabus == |
{| class="wikitable" | {| class="wikitable" | ||
Line 13: | Line 13: | ||
! scope="col"| Topics | ! scope="col"| Topics | ||
! scope="col"| Outcomes | ! scope="col"| Outcomes | ||
− | ! scope="col"| | + | ! scope="col"| Resources |
! scope="col"| Activities | ! scope="col"| Activities | ||
|- | |- | ||
− | | | + | | scope="row" colspan="5" style="text-align:center; background-color:#ffffcc;"| Basic Concepts in RF Design |
− | | | + | |- |
+ | | style="text-align:center;" | 1 | ||
| | | | ||
+ | [[Introduction to EE 229]] | ||
+ | * Challenges in RF Design | ||
+ | * The Big Picture | ||
+ | * General Considerations | ||
+ | * (Ch. 1, 2.1.1 - 2.1.2) | ||
+ | [[Passive Matching Networks]] | ||
+ | * (Ch. 2.5) | ||
+ | | | ||
+ | * Appreciate the importance of various disciplines to RF IC Design. | ||
+ | * Identify the key drivers and trade-offs in RF Design. | ||
+ | * Analyze and design passive impedance matching circuits. | ||
| | | | ||
+ | * Video: Silicon Run I (1996) [https://www.youtube.com/watch?v=3XTWXRj24GM Youtube link] | ||
+ | * [[ngspice Tutorial]] | ||
+ | * Spyder IDE [https://www.spyder-ide.org/ website] | ||
+ | * [[Using Python with ngspice]] | ||
+ | * [[Resonance]] | ||
| | | | ||
+ | * [[229-A1.1]]: IC fabrication | ||
+ | * [[229-A1.2]]: Passive Matching Networks | ||
|- | |- | ||
− | | 2 | + | | style="text-align:center;" | 2 |
− | | | + | | |
+ | [[Nonlinearity]] | ||
+ | * Distortion | ||
+ | * Intermodulation | ||
+ | * (Ch. 2.1.3, 2.2) | ||
+ | [[Noise in RF Circuits]] | ||
+ | * [[Resistor Noise]] | ||
+ | * [[Diode and Transistor Noise]] | ||
+ | * [[Noise Analysis]] | ||
+ | * (Ch. 2.3) | ||
+ | [[Sensitivity and Dynamic Range]] | ||
+ | * (Ch. 2.4) | ||
| | | | ||
+ | * Determine and measure the effects of device nonlinearity on circuit performance. | ||
+ | * Analyze the effects and understand the implications of electronic noise in integrated circuits. | ||
| | | | ||
+ | * Arizona State University Predictive Technology Models (PTM) [http://ptm.asu.edu/ website] | ||
| | | | ||
+ | * [[229-A2.1]]: Nonlinearity in Electronic Circuits | ||
+ | * [[229-A2.2]]: Noise Analysis | ||
+ | |- | ||
+ | | scope="row" colspan="5" style="text-align:center; background-color:#ffffcc;"| Communication Concepts | ||
|- | |- | ||
− | | 3 | + | | style="text-align:center;" | 3 |
− | |||
| | | | ||
+ | [[Modulation]] | ||
+ | * Analog Modulation | ||
+ | * Digital Modulation | ||
+ | [[Multiple Access Techniques]] | ||
+ | * Time and Frequency Division Multiplexing | ||
+ | * CDMA | ||
+ | [[Examples of Wireless Standards]] | ||
+ | | | ||
+ | * Understand the interdependence and implications of the transceiver topology and architecture to the design of RF circuits. | ||
| | | | ||
| | | | ||
+ | * [[229-A3.1]]: Modulation Schemes | ||
+ | * [[229-A3.2]]: TDM and FDM | ||
|- | |- | ||
− | | 4 | + | | style="text-align:center;" | 4 |
− | | | + | | |
+ | [[Transceiver Architectures]] | ||
+ | * Heterodyne Receivers | ||
+ | * Direct-Conversion Receivers | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
− | | 5 | + | | style="text-align:center;" | 5 |
− | | | + | | |
+ | [[Transceiver Architectures]] | ||
+ | * Image-Reject Receivers | ||
+ | * Direct Conversion Transmitters | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
− | | 6 | + | | scope="row" colspan="5" style="text-align:center; background-color:#ffffcc;"| RF Circuits |
− | | | + | |- |
+ | | style="text-align:center;" | 6 | ||
+ | | | ||
+ | [[Low Noise Amplifiers]] | ||
+ | * Input Matching | ||
+ | * LNA Topologies | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
− | | 7 | + | | style="text-align:center;" | 7 |
− | | | + | | |
+ | [[Mixers]] | ||
+ | * Passive Downconversion Mixers | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
− | | 8 | + | | style="text-align:center;" | 8 |
− | | | + | | |
+ | [[Mixers]] | ||
+ | * Active Downconversion Mixers | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
− | | 9 | + | | style="text-align:center;" | 9 |
− | | | + | | |
+ | [[Oscillators]] | ||
+ | * Cross-Coupled Oscillators | ||
+ | * Voltage-Controlled Oscillators | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
− | | 10 | + | | style="text-align:center;" | 10 |
− | | | + | | |
+ | [[Phase-Locked Loops]] | ||
+ | * Type-I and Type-II PLLs | ||
+ | * PFD/CP Nonidealities | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
− | | 11 | + | | style="text-align:center;" | 11 |
− | | | + | | |
+ | [[Power Amplifiers]] | ||
+ | * PA Classes | ||
+ | * High-Efficiency PAs | ||
+ | * Cascode Output Stages | ||
+ | * Linearization | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
− | | | + | | scope="row" colspan="5" style="text-align:center; background-color:#ffffcc;"| Transceiver Design Example |
− | |||
− | |||
− | |||
− | | | ||
|- | |- | ||
− | | | + | | style="text-align:center;" | 12 |
− | | | ||
| | | | ||
− | + | [[Transceiver Design Example]] | |
− | + | * System-Level Considerations | |
− | + | * Receiver Design | |
− | |||
− | |||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
− | | | + | | style="text-align:center;" | 13 |
− | | | ||
| | | | ||
− | + | [[Transceiver Design Example]] | |
− | + | * Transmitter Design | |
− | + | * Synthesizer Design | |
− | |||
− | |||
| | | | ||
| | | | ||
Line 113: | Line 176: | ||
|- | |- | ||
|} | |} | ||
+ | |||
+ | == Textbook == | ||
+ | Behzad Razavi, ''RF Microelectronics (2nd Edition)'', Prentice Hall Press, 2011, USA. |
Latest revision as of 20:26, 4 October 2020
- Radio-Frequency Integrated Circuits
- Semester Offered: 1st semester
- Course Credit: Lecture: 3 units
Catalog Description
Introduction to RF and wireless technology. Characteristics of passive devices at RF. High-frequency amplifier design. Analysis of distortion in amplifiers. Low-noise amplifiers and mixers. Oscillators. Frequency synthesizers. Power amplifiers. Phased-locked loops. Modulators and demodulators. Transceiver architectures. Prereq: EE 220. 3 u.
Syllabus
Module | Topics | Outcomes | Resources | Activities |
---|---|---|---|---|
Basic Concepts in RF Design | ||||
1 |
|
|
|
|
2 |
|
|
|
|
Communication Concepts | ||||
3 |
|
|
||
4 |
|
|||
5 |
|
|||
RF Circuits | ||||
6 |
|
|||
7 |
|
|||
8 |
|
|||
9 |
|
|||
10 |
|
|||
11 |
|
|||
Transceiver Design Example | ||||
12 |
|
|||
13 |
|
Textbook
Behzad Razavi, RF Microelectronics (2nd Edition), Prentice Hall Press, 2011, USA.