The Ideal Integrator
The ideal integrator, shown in Fig. 1, with symbol shown in Fig. 2, makes use of an ideal operational amplifier with , , and . The current through the resistor, , can be expressed as:
-
|
|
(1)
|
Thus, we can write the integrator output voltage, , as:
-
|
|
(2)
|
In the Laplace domain:
-
|
|
(3)
|
Or equivalently:
-
|
|
(4)
|
The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4.
Fig. 5 shows a multiple-input integrator, with output voltage:
-
|
|
(5)
|
Integrator Noise
Fig. 6 shows an integrator where the output is fed back to one of its inputs, giving us:
-
|
|
(5)
|
Ignoring the noise from the amplifier, the output noise of the integrator in Fig. 6 can be expressed as:
-
|
|
(7)
|
The total integrated noise is then:
-
|
|
(8)
|
Integrator Non-Idealities
Finite Gain
Non-Dominant Poles
Capacitor Non-Idealities