Difference between revisions of "Integrators"
Line 21: | Line 21: | ||
{{NumBlk|::|<math> | {{NumBlk|::|<math> | ||
− | \frac{v_o\left(s\right)}{v_i\left(s\right)} = -\frac{1}{s\cdot RC} = -\frac{1}{s\cdot \tau} = -\frac{\omega_0}{s} | + | H\left(s\right) = \frac{v_o\left(s\right)}{v_i\left(s\right)} = -\frac{1}{s\cdot RC} = -\frac{1}{s\cdot \tau} = -\frac{\omega_0}{s} |
</math>|{{EquationRef|4}}}} | </math>|{{EquationRef|4}}}} | ||
The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4. | The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4. | ||
− | Fig. 5 shows a multiple-input integrator, with output voltage: | + | Rewriting the transfer function as: |
+ | |||
+ | {{NumBlk|::|<math> | ||
+ | H\left(s\right) = H\left(j\omega\right) = -\frac{\omega_0}{j\omega} = \frac{1}{-j\frac{\omega}{\omega_0}} = \frac{1}{R\left(\omega\right) + jX\left(\omega\right)} | ||
+ | </math>|{{EquationRef|5}}}} | ||
+ | |||
+ | We can then define the quality factor of an ideal integrator: | ||
+ | |||
+ | {{NumBlk|::|<math> | ||
+ | Q = \frac{X\left(\omega\right)}{R\left(\omega\right)} \rightarrow \infty | ||
+ | </math>|{{EquationRef|6}}}} | ||
+ | |||
+ | Since <math>R\left(\omega\right) = 0</math>. Fig. 5 shows a multiple-input integrator, with output voltage: | ||
{{NumBlk|::|<math> | {{NumBlk|::|<math> | ||
v_o\left(s\right) = -\frac{1}{s\cdot R_1 C}\cdot v_1\left(s\right) -\frac{1}{s\cdot R_2 C}\cdot v_2\left(s\right) | v_o\left(s\right) = -\frac{1}{s\cdot R_1 C}\cdot v_1\left(s\right) -\frac{1}{s\cdot R_2 C}\cdot v_2\left(s\right) | ||
− | </math>|{{EquationRef| | + | </math>|{{EquationRef|7}}}} |
== Integrator Noise == | == Integrator Noise == | ||
Line 37: | Line 49: | ||
{{NumBlk|::|<math> | {{NumBlk|::|<math> | ||
v_o\left(s\right) = -\frac{1}{s\cdot R_1 C}\cdot v_i\left(s\right) -\frac{1}{s\cdot R_2 C}\cdot v_o\left(s\right) | v_o\left(s\right) = -\frac{1}{s\cdot R_1 C}\cdot v_i\left(s\right) -\frac{1}{s\cdot R_2 C}\cdot v_o\left(s\right) | ||
− | </math>|{{EquationRef| | + | </math>|{{EquationRef|8}}}} |
Ignoring the noise from the amplifier, the output noise of the integrator in Fig. 6 can be expressed as: | Ignoring the noise from the amplifier, the output noise of the integrator in Fig. 6 can be expressed as: | ||
Line 44: | Line 56: | ||
\begin{align} | \begin{align} | ||
\frac{\overline{v_o^2}}{\Delta f} & = \left|H_1\left(s\right)\right|^2\cdot \frac{\overline{v_{n1}^2}}{\Delta f} + \left|H_2\left(s\right)\right|^2\cdot \frac{\overline{v_{n2}^2}}{\Delta f} \\ | \frac{\overline{v_o^2}}{\Delta f} & = \left|H_1\left(s\right)\right|^2\cdot \frac{\overline{v_{n1}^2}}{\Delta f} + \left|H_2\left(s\right)\right|^2\cdot \frac{\overline{v_{n2}^2}}{\Delta f} \\ | ||
− | & = \left|\frac{1}{1 + | + | & = \left|\frac{1}{1 + sR_1 C}\right|^2\cdot \frac{\overline{v_{n1}^2}}{\Delta f} + \left|\frac{1}{1 + sR_2 C}\right|^2\cdot \frac{\overline{v_{n2}^2}}{\Delta f} \\ |
& = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot \frac{\overline{v_{n1}^2}}{\Delta f} + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot \frac{\overline{v_{n2}^2}}{\Delta f} \\ | & = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot \frac{\overline{v_{n1}^2}}{\Delta f} + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot \frac{\overline{v_{n2}^2}}{\Delta f} \\ | ||
& = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot 4kTR_1 + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot 4kTR_2 \\ | & = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot 4kTR_1 + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot 4kTR_2 \\ | ||
\end{align} | \end{align} | ||
− | </math>|{{EquationRef| | + | </math>|{{EquationRef|9}}}} |
The total integrated noise is then: | The total integrated noise is then: | ||
Line 58: | Line 70: | ||
& = \frac{kT}{C} + \frac{kT}{C} = \frac{2kT}{C} \\ | & = \frac{kT}{C} + \frac{kT}{C} = \frac{2kT}{C} \\ | ||
\end{align} | \end{align} | ||
− | </math>|{{EquationRef| | + | </math>|{{EquationRef|10}}}} |
== Integrator Non-Idealities == | == Integrator Non-Idealities == |
Revision as of 00:44, 2 April 2021
Contents
The Ideal Integrator
The ideal integrator, shown in Fig. 1, with symbol shown in Fig. 2, makes use of an ideal operational amplifier with , , and . The current through the resistor, , can be expressed as:
-
(1)
-
Thus, we can write the integrator output voltage, , as:
-
(2)
-
In the Laplace domain:
-
(3)
-
Or equivalently:
-
(4)
-
The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4.
Rewriting the transfer function as:
-
(5)
-
We can then define the quality factor of an ideal integrator:
-
(6)
-
Since . Fig. 5 shows a multiple-input integrator, with output voltage:
-
(7)
-
Integrator Noise
Fig. 6 shows an integrator where the output is fed back to one of its inputs, giving us:
-
(8)
-
Ignoring the noise from the amplifier, the output noise of the integrator in Fig. 6 can be expressed as:
-
(9)
-
The total integrated noise is then:
-
(10)
-