Difference between revisions of "Integrators"

From Microlab Classes
Jump to navigation Jump to search
Line 21: Line 21:
  
 
{{NumBlk|::|<math>
 
{{NumBlk|::|<math>
\frac{v_o\left(s\right)}{v_i\left(s\right)} = -\frac{1}{s\cdot RC} = -\frac{1}{s\cdot \tau} = -\frac{\omega_0}{s}
+
H\left(s\right) = \frac{v_o\left(s\right)}{v_i\left(s\right)} = -\frac{1}{s\cdot RC} = -\frac{1}{s\cdot \tau} = -\frac{\omega_0}{s}
 
</math>|{{EquationRef|4}}}}
 
</math>|{{EquationRef|4}}}}
  
 
The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4.  
 
The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4.  
  
Fig. 5 shows a multiple-input integrator, with output voltage:
+
Rewriting the transfer function as:
 +
 
 +
{{NumBlk|::|<math>
 +
H\left(s\right) =  H\left(j\omega\right) = -\frac{\omega_0}{j\omega} = \frac{1}{-j\frac{\omega}{\omega_0}} = \frac{1}{R\left(\omega\right) + jX\left(\omega\right)}
 +
</math>|{{EquationRef|5}}}}
 +
 
 +
We can then define the quality factor of an ideal integrator:
 +
 
 +
{{NumBlk|::|<math>
 +
Q = \frac{X\left(\omega\right)}{R\left(\omega\right)} \rightarrow \infty
 +
</math>|{{EquationRef|6}}}}
 +
 
 +
Since <math>R\left(\omega\right) = 0</math>. Fig. 5 shows a multiple-input integrator, with output voltage:
  
 
{{NumBlk|::|<math>
 
{{NumBlk|::|<math>
 
v_o\left(s\right) = -\frac{1}{s\cdot R_1 C}\cdot v_1\left(s\right) -\frac{1}{s\cdot R_2 C}\cdot v_2\left(s\right)   
 
v_o\left(s\right) = -\frac{1}{s\cdot R_1 C}\cdot v_1\left(s\right) -\frac{1}{s\cdot R_2 C}\cdot v_2\left(s\right)   
</math>|{{EquationRef|5}}}}
+
</math>|{{EquationRef|7}}}}
  
 
== Integrator Noise ==
 
== Integrator Noise ==
Line 37: Line 49:
 
{{NumBlk|::|<math>
 
{{NumBlk|::|<math>
 
v_o\left(s\right) = -\frac{1}{s\cdot R_1 C}\cdot v_i\left(s\right) -\frac{1}{s\cdot R_2 C}\cdot v_o\left(s\right)  
 
v_o\left(s\right) = -\frac{1}{s\cdot R_1 C}\cdot v_i\left(s\right) -\frac{1}{s\cdot R_2 C}\cdot v_o\left(s\right)  
</math>|{{EquationRef|5}}}}
+
</math>|{{EquationRef|8}}}}
  
 
Ignoring the noise from the amplifier, the output noise of the integrator in Fig. 6 can be expressed as:
 
Ignoring the noise from the amplifier, the output noise of the integrator in Fig. 6 can be expressed as:
Line 44: Line 56:
 
\begin{align}
 
\begin{align}
 
\frac{\overline{v_o^2}}{\Delta f} & = \left|H_1\left(s\right)\right|^2\cdot \frac{\overline{v_{n1}^2}}{\Delta f} + \left|H_2\left(s\right)\right|^2\cdot \frac{\overline{v_{n2}^2}}{\Delta f} \\
 
\frac{\overline{v_o^2}}{\Delta f} & = \left|H_1\left(s\right)\right|^2\cdot \frac{\overline{v_{n1}^2}}{\Delta f} + \left|H_2\left(s\right)\right|^2\cdot \frac{\overline{v_{n2}^2}}{\Delta f} \\
& = \left|\frac{1}{1 + sRC}\right|^2\cdot \frac{\overline{v_{n1}^2}}{\Delta f} + \left|\frac{1}{1 + sRC}\right|^2\cdot \frac{\overline{v_{n2}^2}}{\Delta f} \\
+
& = \left|\frac{1}{1 + sR_1 C}\right|^2\cdot \frac{\overline{v_{n1}^2}}{\Delta f} + \left|\frac{1}{1 + sR_2 C}\right|^2\cdot \frac{\overline{v_{n2}^2}}{\Delta f} \\
 
& = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot \frac{\overline{v_{n1}^2}}{\Delta f} + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot \frac{\overline{v_{n2}^2}}{\Delta f} \\
 
& = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot \frac{\overline{v_{n1}^2}}{\Delta f} + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot \frac{\overline{v_{n2}^2}}{\Delta f} \\
 
& = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot 4kTR_1 + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot 4kTR_2 \\
 
& = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot 4kTR_1 + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot 4kTR_2 \\
 
\end{align}
 
\end{align}
</math>|{{EquationRef|7}}}}
+
</math>|{{EquationRef|9}}}}
  
 
The total integrated noise is then:
 
The total integrated noise is then:
Line 58: Line 70:
 
& = \frac{kT}{C} + \frac{kT}{C} = \frac{2kT}{C} \\
 
& = \frac{kT}{C} + \frac{kT}{C} = \frac{2kT}{C} \\
 
\end{align}
 
\end{align}
</math>|{{EquationRef|8}}}}
+
</math>|{{EquationRef|10}}}}
  
 
== Integrator Non-Idealities ==
 
== Integrator Non-Idealities ==

Revision as of 00:44, 2 April 2021

The Ideal Integrator

The ideal integrator, shown in Fig. 1, with symbol shown in Fig. 2, makes use of an ideal operational amplifier with , , and . The current through the resistor, , can be expressed as:

 

 

 

 

(1)

Thus, we can write the integrator output voltage, , as:

 

 

 

 

(2)

In the Laplace domain:

 

 

 

 

(3)

Or equivalently:

 

 

 

 

(4)

The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4.

Rewriting the transfer function as:

 

 

 

 

(5)

We can then define the quality factor of an ideal integrator:

 

 

 

 

(6)

Since . Fig. 5 shows a multiple-input integrator, with output voltage:

 

 

 

 

(7)

Integrator Noise

Fig. 6 shows an integrator where the output is fed back to one of its inputs, giving us:

 

 

 

 

(8)

Ignoring the noise from the amplifier, the output noise of the integrator in Fig. 6 can be expressed as:

 

 

 

 

(9)

The total integrated noise is then:

 

 

 

 

(10)

Integrator Non-Idealities

Finite Gain

Non-Dominant Poles

Capacitor Non-Idealities