Difference between revisions of "Integrators"
Jump to navigation
Jump to search
Line 43: | Line 43: | ||
{{NumBlk|::|<math> | {{NumBlk|::|<math> | ||
\begin{align} | \begin{align} | ||
− | \overline{v_o^2} & = \left|H_1\left(s\right)\right|^2\cdot \overline{v_{n1}^2} + \left|H_2\left(s\right)\right|^2\cdot \overline{v_{n2}^2} \\ | + | \frac{\overline{v_o^2}}{\Delta f} & = \left|H_1\left(s\right)\right|^2\cdot \frac{\overline{v_{n1}^2}}{\Delta f} + \left|H_2\left(s\right)\right|^2\cdot \frac{\overline{v_{n2}^2}}{\Delta f} \\ |
− | & = \left|\frac{1}{1 + sRC}\right|^2\cdot \overline{v_{n1}^2} + \left|\frac{1}{1 + sRC}\right|^2\cdot \overline{v_{n2}^2} \\ | + | & = \left|\frac{1}{1 + sRC}\right|^2\cdot \frac{\overline{v_{n1}^2}}{\Delta f} + \left|\frac{1}{1 + sRC}\right|^2\cdot \frac{\overline{v_{n2}^2}}{\Delta f} \\ |
− | & = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot \overline{v_{n1}^2} + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot \overline{v_{n2}^2} \\ | + | & = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot \frac{\overline{v_{n1}^2}}{\Delta f} + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot \frac{\overline{v_{n2}^2}}{\Delta f} \\ |
− | & = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot 4kTR_1 | + | & = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot 4kTR_1 + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot 4kTR_2 \\ |
\end{align} | \end{align} | ||
</math>|{{EquationRef|7}}}} | </math>|{{EquationRef|7}}}} | ||
Line 54: | Line 54: | ||
{{NumBlk|::|<math> | {{NumBlk|::|<math> | ||
\begin{align} | \begin{align} | ||
− | \overline{v_{o,\text{T}}^2} & = \int_0^\infty \left|H_1\left(s\right)\right|^2\cdot \overline{v_{n1}^2} df + \int_0^\infty \left|H_2\left(s\right)\right|^2\cdot \overline{v_{n2}^2} df \\ | + | \overline{v_{o,\text{T}}^2} & = \int_0^\infty \left|H_1\left(s\right)\right|^2\cdot \frac{\overline{v_{n1}^2}}{\Delta f} df + \int_0^\infty \left|H_2\left(s\right)\right|^2\cdot \frac{\overline{v_{n2}^2}}{\Delta f} df \\ |
& = \int_0^\infty \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot 4kTR_1\cdot df + \int_0^\infty \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot 4kTR_2\cdot df \\ | & = \int_0^\infty \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot 4kTR_1\cdot df + \int_0^\infty \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot 4kTR_2\cdot df \\ | ||
− | & = \frac{kT}{C} + \frac{kT}{C} = | + | & = \frac{kT}{C} + \frac{kT}{C} = \frac{2kT}{C} \\ |
\end{align} | \end{align} | ||
</math>|{{EquationRef|8}}}} | </math>|{{EquationRef|8}}}} |
Revision as of 20:18, 1 April 2021
Contents
The Ideal Integrator
The ideal integrator, shown in Fig. 1, with symbol shown in Fig. 2, makes use of an ideal operational amplifier with , , and . The current through the resistor, , can be expressed as:
-
(1)
-
Thus, we can write the integrator output voltage, , as:
-
(2)
-
In the Laplace domain:
-
(3)
-
Or equivalently:
-
(4)
-
The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4.
Fig. 5 shows a multiple-input integrator, with output voltage:
-
(5)
-
Integrator Noise
Fig. 6 shows an integrator where the output is fed back to one of its inputs, giving us:
-
(5)
-
Ignoring the noise from the amplifier, the output noise of the integrator in Fig. 6 can be expressed as:
-
(7)
-
The total integrated noise is then:
-
(8)
-