Difference between revisions of "Integrators"

From Microlab Classes
Jump to navigation Jump to search
Line 26: Line 26:
 
The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4.  
 
The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4.  
  
Fig. 5 shows a multiple-input integrator, and Fig. 6 shows an integrator where the output is fed back to one of its inputs.
+
Fig. 5 shows a multiple-input integrator, with output voltage:
 +
 
 +
{{NumBlk|::|<math>
 +
v_o\left(s\right) = -\frac{1}{s\cdot R_1 C}\cdot v_1\left(s\right) -\frac{1}{s\cdot R_2 C}\cdot v_2\left(s\right) 
 +
</math>|{{EquationRef|5}}}}
  
 
== Integrator Noise ==
 
== Integrator Noise ==
Ignoring the noise from the amplifier, the output noise of the integrator in Fig. 6, for <math>R_1 = R_2 = R</math>, can be expressed as:
+
Fig. 6 shows an integrator where the output is fed back to one of its inputs, giving us:
 +
 
 +
{{NumBlk|::|<math>
 +
v_o\left(s\right) = -\frac{1}{s\cdot R_1 C}\cdot v_i\left(s\right) -\frac{1}{s\cdot R_2 C}\cdot v_o\left(s\right)
 +
</math>|{{EquationRef|5}}}}
 +
 
 +
Ignoring the noise from the amplifier, the output noise of the integrator in Fig. 6 can be expressed as:
  
 
{{NumBlk|::|<math>
 
{{NumBlk|::|<math>
Line 38: Line 48:
 
& = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot 4kTR_1\cdot \Delta f + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot 4kTR_2\cdot \Delta f \\
 
& = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot 4kTR_1\cdot \Delta f + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot 4kTR_2\cdot \Delta f \\
 
\end{align}
 
\end{align}
</math>|{{EquationRef|5}}}}
+
</math>|{{EquationRef|7}}}}
  
 
The total integrated noise is then:
 
The total integrated noise is then:
Line 45: Line 55:
 
\begin{align}
 
\begin{align}
 
\overline{v_{o,\text{T}}^2} & = \int_0^\infty \left|H_1\left(s\right)\right|^2\cdot \overline{v_{n1}^2} df + \int_0^\infty \left|H_2\left(s\right)\right|^2\cdot \overline{v_{n2}^2} df \\
 
\overline{v_{o,\text{T}}^2} & = \int_0^\infty \left|H_1\left(s\right)\right|^2\cdot \overline{v_{n1}^2} df + \int_0^\infty \left|H_2\left(s\right)\right|^2\cdot \overline{v_{n2}^2} df \\
& = \int_0^\infty \frac{1}{1 + \omega^2 R^2 C^2}\cdot 4kTR\cdot df + \int_0^\infty \frac{1}{1 + \omega^2 R^2 C^2}\cdot 4kTR\cdot df \\
+
& = \int_0^\infty \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot 4kTR_1\cdot df + \int_0^\infty \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot 4kTR_2\cdot df \\
 
& = \frac{kT}{C} + \frac{kT}{C} = 2\cdot \frac{kT}{C} \\
 
& = \frac{kT}{C} + \frac{kT}{C} = 2\cdot \frac{kT}{C} \\
 
\end{align}
 
\end{align}
</math>|{{EquationRef|6}}}}
+
</math>|{{EquationRef|8}}}}
  
 
== Integrator Non-Idealities ==
 
== Integrator Non-Idealities ==

Revision as of 17:59, 1 April 2021

The Ideal Integrator

The ideal integrator, shown in Fig. 1, with symbol shown in Fig. 2, makes use of an ideal operational amplifier with , , and . The current through the resistor, , can be expressed as:

 

 

 

 

(1)

Thus, we can write the integrator output voltage, , as:

 

 

 

 

(2)

In the Laplace domain:

 

 

 

 

(3)

Or equivalently:

 

 

 

 

(4)

The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4.

Fig. 5 shows a multiple-input integrator, with output voltage:

 

 

 

 

(5)

Integrator Noise

Fig. 6 shows an integrator where the output is fed back to one of its inputs, giving us:

 

 

 

 

(5)

Ignoring the noise from the amplifier, the output noise of the integrator in Fig. 6 can be expressed as:

 

 

 

 

(7)

The total integrated noise is then:

 

 

 

 

(8)

Integrator Non-Idealities

Finite Gain

Non-Dominant Poles

Capacitor Non-Idealities