Difference between revisions of "Integrators"
Jump to navigation
Jump to search
Line 26: | Line 26: | ||
The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4. | The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4. | ||
− | Fig. 5 shows a multiple-input integrator, | + | Fig. 5 shows a multiple-input integrator, with output voltage: |
+ | |||
+ | {{NumBlk|::|<math> | ||
+ | v_o\left(s\right) = -\frac{1}{s\cdot R_1 C}\cdot v_1\left(s\right) -\frac{1}{s\cdot R_2 C}\cdot v_2\left(s\right) | ||
+ | </math>|{{EquationRef|5}}}} | ||
== Integrator Noise == | == Integrator Noise == | ||
− | Ignoring the noise from the amplifier, the output noise of the integrator in Fig. 6 | + | Fig. 6 shows an integrator where the output is fed back to one of its inputs, giving us: |
+ | |||
+ | {{NumBlk|::|<math> | ||
+ | v_o\left(s\right) = -\frac{1}{s\cdot R_1 C}\cdot v_i\left(s\right) -\frac{1}{s\cdot R_2 C}\cdot v_o\left(s\right) | ||
+ | </math>|{{EquationRef|5}}}} | ||
+ | |||
+ | Ignoring the noise from the amplifier, the output noise of the integrator in Fig. 6 can be expressed as: | ||
{{NumBlk|::|<math> | {{NumBlk|::|<math> | ||
Line 38: | Line 48: | ||
& = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot 4kTR_1\cdot \Delta f + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot 4kTR_2\cdot \Delta f \\ | & = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot 4kTR_1\cdot \Delta f + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot 4kTR_2\cdot \Delta f \\ | ||
\end{align} | \end{align} | ||
− | </math>|{{EquationRef| | + | </math>|{{EquationRef|7}}}} |
The total integrated noise is then: | The total integrated noise is then: | ||
Line 45: | Line 55: | ||
\begin{align} | \begin{align} | ||
\overline{v_{o,\text{T}}^2} & = \int_0^\infty \left|H_1\left(s\right)\right|^2\cdot \overline{v_{n1}^2} df + \int_0^\infty \left|H_2\left(s\right)\right|^2\cdot \overline{v_{n2}^2} df \\ | \overline{v_{o,\text{T}}^2} & = \int_0^\infty \left|H_1\left(s\right)\right|^2\cdot \overline{v_{n1}^2} df + \int_0^\infty \left|H_2\left(s\right)\right|^2\cdot \overline{v_{n2}^2} df \\ | ||
− | & = \int_0^\infty \frac{1}{1 + \omega^2 | + | & = \int_0^\infty \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot 4kTR_1\cdot df + \int_0^\infty \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot 4kTR_2\cdot df \\ |
& = \frac{kT}{C} + \frac{kT}{C} = 2\cdot \frac{kT}{C} \\ | & = \frac{kT}{C} + \frac{kT}{C} = 2\cdot \frac{kT}{C} \\ | ||
\end{align} | \end{align} | ||
− | </math>|{{EquationRef| | + | </math>|{{EquationRef|8}}}} |
== Integrator Non-Idealities == | == Integrator Non-Idealities == |
Revision as of 17:59, 1 April 2021
Contents
The Ideal Integrator
The ideal integrator, shown in Fig. 1, with symbol shown in Fig. 2, makes use of an ideal operational amplifier with , , and . The current through the resistor, , can be expressed as:
-
(1)
-
Thus, we can write the integrator output voltage, , as:
-
(2)
-
In the Laplace domain:
-
(3)
-
Or equivalently:
-
(4)
-
The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4.
Fig. 5 shows a multiple-input integrator, with output voltage:
-
(5)
-
Integrator Noise
Fig. 6 shows an integrator where the output is fed back to one of its inputs, giving us:
-
(5)
-
Ignoring the noise from the amplifier, the output noise of the integrator in Fig. 6 can be expressed as:
-
(7)
-
The total integrated noise is then:
-
(8)
-