Difference between revisions of "Integrators"

From Microlab Classes
Jump to navigation Jump to search
Line 29: Line 29:
  
 
== Integrator Noise ==
 
== Integrator Noise ==
Ignoring the noise from the amplifier, the output noise can be expressed as:
+
Ignoring the noise from the amplifier, the output noise of the integrator in Fig. 6, for <math>R_1 = R_2 = R</math>, can be expressed as:
  
 
{{NumBlk|::|<math>
 
{{NumBlk|::|<math>
Line 35: Line 35:
 
\overline{v_o^2} & = \left|H_1\left(s\right)\right|^2\cdot \overline{v_{n1}^2} + \left|H_2\left(s\right)\right|^2\cdot \overline{v_{n2}^2} \\
 
\overline{v_o^2} & = \left|H_1\left(s\right)\right|^2\cdot \overline{v_{n1}^2} + \left|H_2\left(s\right)\right|^2\cdot \overline{v_{n2}^2} \\
 
& = \left|\frac{1}{1 + sRC}\right|^2\cdot \overline{v_{n1}^2} + \left|\frac{1}{1 + sRC}\right|^2\cdot \overline{v_{n2}^2} \\
 
& = \left|\frac{1}{1 + sRC}\right|^2\cdot \overline{v_{n1}^2} + \left|\frac{1}{1 + sRC}\right|^2\cdot \overline{v_{n2}^2} \\
& = \frac{1}{1 + \omega^2 R^2 C^2}\cdot \overline{v_{n1}^2} + \frac{1}{1 + \omega^2 R^2 C^2}\cdot \overline{v_{n2}^2} \\
+
& = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot \overline{v_{n1}^2} + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot \overline{v_{n2}^2} \\
& = \frac{1}{1 + \omega^2 R^2 C^2}\cdot 4kTR\cdot \Delta f + \frac{1}{1 + \omega^2 R^2 C^2}\cdot 4kTR\cdot \Delta f \\
+
& = \frac{1}{1 + \omega^2 R_1^2 C^2}\cdot 4kTR_1\cdot \Delta f + \frac{1}{1 + \omega^2 R_2^2 C^2}\cdot 4kTR_2\cdot \Delta f \\
 
\end{align}
 
\end{align}
 
</math>|{{EquationRef|5}}}}
 
</math>|{{EquationRef|5}}}}

Revision as of 17:50, 1 April 2021

The Ideal Integrator

The ideal integrator, shown in Fig. 1, with symbol shown in Fig. 2, makes use of an ideal operational amplifier with , , and . The current through the resistor, , can be expressed as:

 

 

 

 

(1)

Thus, we can write the integrator output voltage, , as:

 

 

 

 

(2)

In the Laplace domain:

 

 

 

 

(3)

Or equivalently:

 

 

 

 

(4)

The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4.

Fig. 5 shows a multiple-input integrator, and Fig. 6 shows an integrator where the output is fed back to one of its inputs.

Integrator Noise

Ignoring the noise from the amplifier, the output noise of the integrator in Fig. 6, for , can be expressed as:

 

 

 

 

(5)

The total integrated noise is then:

 

 

 

 

(6)

Integrator Non-Idealities

Finite Gain

Non-Dominant Poles

Capacitor Non-Idealities