Difference between revisions of "Integrators"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
== The Ideal Integrator == | == The Ideal Integrator == | ||
− | The ideal integrator, shown in Fig. 1., makes use of an ideal operational amplifier with <math>A_v\rightarrow\infty</math>, <math>R_i\rightarrow\infty</math>, and <math>R_o=0</math>. The current through the resistor, <math>i_R</math>, can be expressed as: | + | The ideal integrator, shown in Fig. 1, with symbol shown in Fig. 2, makes use of an ideal operational amplifier with <math>A_v\rightarrow\infty</math>, <math>R_i\rightarrow\infty</math>, and <math>R_o=0</math>. The current through the resistor, <math>i_R</math>, can be expressed as: |
{{NumBlk|::|<math> | {{NumBlk|::|<math> | ||
Line 23: | Line 23: | ||
\frac{v_o\left(s\right)}{v_i\left(s\right)} = -\frac{1}{s\cdot RC} = -\frac{1}{s\cdot \tau} = -\frac{\omega_0}{s} | \frac{v_o\left(s\right)}{v_i\left(s\right)} = -\frac{1}{s\cdot RC} = -\frac{1}{s\cdot \tau} = -\frac{\omega_0}{s} | ||
</math>|{{EquationRef|4}}}} | </math>|{{EquationRef|4}}}} | ||
+ | |||
+ | The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4. | ||
+ | |||
+ | Fig. 5 shows a multiple-input integrator, and Fig. 6 shows an integrator where the output is fed back to one of its inputs. | ||
== Integrator Noise == | == Integrator Noise == | ||
+ | Ignoring the noise from the amplifier, the output noise can be expressed as: | ||
+ | |||
+ | {{NumBlk|::|<math> | ||
+ | \begin{align} | ||
+ | \overline{v_o^2} & = \left|H_1\left(s\right)\right|^2\cdot \overline{v_{n1}^2} + \left|H_2\left(s\right)\right|^2\cdot \overline{v_{n2}^2} \\ | ||
+ | & = \left|\frac{1}{1 + sRC}\right|^2\cdot \overline{v_{n1}^2} + \left|\frac{1}{1 + sRC}\right|^2\cdot \overline{v_{n2}^2} \\ | ||
+ | & = \frac{1}{1 + \omega^2 R^2 C^2}\cdot \overline{v_{n1}^2} + \frac{1}{1 + \omega^2 R^2 C^2}\cdot \overline{v_{n2}^2} \\ | ||
+ | & = \frac{1}{1 + \omega^2 R^2 C^2}\cdot 4kTR\cdot \Delta f + \frac{1}{1 + \omega^2 R^2 C^2}\cdot 4kTR\cdot \Delta f \\ | ||
+ | \end{align} | ||
+ | </math>|{{EquationRef|5}}}} | ||
+ | |||
+ | The total integrated noise is then: | ||
+ | |||
+ | {{NumBlk|::|<math> | ||
+ | \begin{align} | ||
+ | \overline{v_{o,\text{T}}^2} & = \int_0^\infty \left|H_1\left(s\right)\right|^2\cdot \overline{v_{n1}^2} df + \int_0^\infty \left|H_2\left(s\right)\right|^2\cdot \overline{v_{n2}^2} df \\ | ||
+ | & = \int_0^\infty \frac{1}{1 + \omega^2 R^2 C^2}\cdot 4kTR\cdot df + \int_0^\infty \frac{1}{1 + \omega^2 R^2 C^2}\cdot 4kTR\cdot df \\ | ||
+ | & = \frac{kT}{C} + \frac{kT}{C} = 2\cdot \frac{kT}{C} \\ | ||
+ | \end{align} | ||
+ | </math>|{{EquationRef|6}}}} | ||
== Integrator Non-Idealities == | == Integrator Non-Idealities == |
Revision as of 16:30, 1 April 2021
Contents
The Ideal Integrator
The ideal integrator, shown in Fig. 1, with symbol shown in Fig. 2, makes use of an ideal operational amplifier with , , and . The current through the resistor, , can be expressed as:
-
(1)
-
Thus, we can write the integrator output voltage, , as:
-
(2)
-
In the Laplace domain:
-
(3)
-
Or equivalently:
-
(4)
-
The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4.
Fig. 5 shows a multiple-input integrator, and Fig. 6 shows an integrator where the output is fed back to one of its inputs.
Integrator Noise
Ignoring the noise from the amplifier, the output noise can be expressed as:
-
(5)
-
The total integrated noise is then:
-
(6)
-