Difference between revisions of "Integrators"

From Microlab Classes
Jump to navigation Jump to search
Line 1: Line 1:
 
== The Ideal Integrator ==
 
== The Ideal Integrator ==
The ideal integrator, shown in Fig. 1., makes use of an ideal operational amplifier with <math>A_v\rightarrow\infty</math>, <math>R_i\rightarrow\infty</math>, and <math>R_o=0</math>. The current through the resistor, <math>i_R</math>, can be expressed as:
+
The ideal integrator, shown in Fig. 1, with symbol shown in Fig. 2, makes use of an ideal operational amplifier with <math>A_v\rightarrow\infty</math>, <math>R_i\rightarrow\infty</math>, and <math>R_o=0</math>. The current through the resistor, <math>i_R</math>, can be expressed as:
  
 
{{NumBlk|::|<math>
 
{{NumBlk|::|<math>
Line 23: Line 23:
 
\frac{v_o\left(s\right)}{v_i\left(s\right)} = -\frac{1}{s\cdot RC} = -\frac{1}{s\cdot \tau} = -\frac{\omega_0}{s}
 
\frac{v_o\left(s\right)}{v_i\left(s\right)} = -\frac{1}{s\cdot RC} = -\frac{1}{s\cdot \tau} = -\frac{\omega_0}{s}
 
</math>|{{EquationRef|4}}}}
 
</math>|{{EquationRef|4}}}}
 +
 +
The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4.
 +
 +
Fig. 5 shows a multiple-input integrator, and Fig. 6 shows an integrator where the output is fed back to one of its inputs.
  
 
== Integrator Noise ==
 
== Integrator Noise ==
 +
Ignoring the noise from the amplifier, the output noise can be expressed as:
 +
 +
{{NumBlk|::|<math>
 +
\begin{align}
 +
\overline{v_o^2} & = \left|H_1\left(s\right)\right|^2\cdot \overline{v_{n1}^2} + \left|H_2\left(s\right)\right|^2\cdot \overline{v_{n2}^2} \\
 +
& = \left|\frac{1}{1 + sRC}\right|^2\cdot \overline{v_{n1}^2} + \left|\frac{1}{1 + sRC}\right|^2\cdot \overline{v_{n2}^2} \\
 +
& = \frac{1}{1 + \omega^2 R^2 C^2}\cdot \overline{v_{n1}^2} + \frac{1}{1 + \omega^2 R^2 C^2}\cdot \overline{v_{n2}^2} \\
 +
& = \frac{1}{1 + \omega^2 R^2 C^2}\cdot 4kTR\cdot \Delta f + \frac{1}{1 + \omega^2 R^2 C^2}\cdot 4kTR\cdot \Delta f \\
 +
\end{align}
 +
</math>|{{EquationRef|5}}}}
 +
 +
The total integrated noise is then:
 +
 +
{{NumBlk|::|<math>
 +
\begin{align}
 +
\overline{v_{o,\text{T}}^2} & = \int_0^\infty \left|H_1\left(s\right)\right|^2\cdot \overline{v_{n1}^2} df + \int_0^\infty \left|H_2\left(s\right)\right|^2\cdot \overline{v_{n2}^2} df \\
 +
& = \int_0^\infty \frac{1}{1 + \omega^2 R^2 C^2}\cdot 4kTR\cdot df + \int_0^\infty \frac{1}{1 + \omega^2 R^2 C^2}\cdot 4kTR\cdot df \\
 +
& = \frac{kT}{C} + \frac{kT}{C} = 2\cdot \frac{kT}{C} \\
 +
\end{align}
 +
</math>|{{EquationRef|6}}}}
  
 
== Integrator Non-Idealities ==
 
== Integrator Non-Idealities ==

Revision as of 16:30, 1 April 2021

The Ideal Integrator

The ideal integrator, shown in Fig. 1, with symbol shown in Fig. 2, makes use of an ideal operational amplifier with , , and . The current through the resistor, , can be expressed as:

 

 

 

 

(1)

Thus, we can write the integrator output voltage, , as:

 

 

 

 

(2)

In the Laplace domain:

 

 

 

 

(3)

Or equivalently:

 

 

 

 

(4)

The magnitude and phase response of an ideal integrator is shown in Figs. 3 and 4.

Fig. 5 shows a multiple-input integrator, and Fig. 6 shows an integrator where the output is fed back to one of its inputs.

Integrator Noise

Ignoring the noise from the amplifier, the output noise can be expressed as:

 

 

 

 

(5)

The total integrated noise is then:

 

 

 

 

(6)

Integrator Non-Idealities

Finite Gain

Non-Dominant Poles

Capacitor Non-Idealities