Difference between revisions of "Integrators"

From Microlab Classes
Jump to navigation Jump to search
Line 21: Line 21:
  
 
{{NumBlk|::|<math>
 
{{NumBlk|::|<math>
\frac{v_o\left(s\right)}{v_i\left(s\right)} = -\frac{1}{s\cdot RC} = -\frac{1}{s\cdot \tau}
+
\frac{v_o\left(s\right)}{v_i\left(s\right)} = -\frac{1}{s\cdot RC} = -\frac{1}{s\cdot \tau} = -\frac{\omega_0}{s}
 
</math>|{{EquationRef|4}}}}
 
</math>|{{EquationRef|4}}}}
  

Revision as of 16:07, 1 April 2021

The Ideal Integrator

The ideal integrator, shown in Fig. 1., makes use of an ideal operational amplifier with , , and . The current through the resistor, , can be expressed as:

 

 

 

 

(1)

Thus, we can write the integrator output voltage, , as:

 

 

 

 

(2)

In the Laplace domain:

 

 

 

 

(3)

Or equivalently:

 

 

 

 

(4)

Integrator Noise

Integrator Non-Idealities

Finite Gain

Non-Dominant Poles

Capacitor Non-Idealities