Difference between revisions of "Integrators"
Jump to navigation
Jump to search
Line 21: | Line 21: | ||
{{NumBlk|::|<math> | {{NumBlk|::|<math> | ||
− | \frac{v_o\left(s\right)}{v_i\left(s\right)} = -\frac{1}{s\cdot RC} = -\frac{1}{s\cdot \tau} | + | \frac{v_o\left(s\right)}{v_i\left(s\right)} = -\frac{1}{s\cdot RC} = -\frac{1}{s\cdot \tau} = -\frac{\omega_0}{s} |
</math>|{{EquationRef|4}}}} | </math>|{{EquationRef|4}}}} | ||
Revision as of 16:07, 1 April 2021
Contents
The Ideal Integrator
The ideal integrator, shown in Fig. 1., makes use of an ideal operational amplifier with , , and . The current through the resistor, , can be expressed as:
-
(1)
-
Thus, we can write the integrator output voltage, , as:
-
(2)
-
In the Laplace domain:
-
(3)
-
Or equivalently:
-
(4)
-