Difference between revisions of "Active Filters"

From Microlab Classes
Jump to navigation Jump to search
Line 40: Line 40:
 
R_s = \frac{\omega_0 L}{Q_\text{ind}} = \frac{2\pi \cdot \left(1\,\mathrm{kHz}\right) \cdot \left(398\,\mathrm{\mu H}\right)}{40} = 0.0625\,\mathrm{\Omega}
 
R_s = \frac{\omega_0 L}{Q_\text{ind}} = \frac{2\pi \cdot \left(1\,\mathrm{kHz}\right) \cdot \left(398\,\mathrm{\mu H}\right)}{40} = 0.0625\,\mathrm{\Omega}
 
</math>|{{EquationRef|6}}}}
 
</math>|{{EquationRef|6}}}}
 +
 +
We can convert the series RL circuit to its parallel circuit equivalent in Fig. 3 for frequencies around <math>\omega_0</math> by first writing out the admittance of the series RL circuit as:
 +
 +
{{NumBlk|::|<math>
 +
\begin{align}
 +
Y & = \frac{1}{R_s + j\omega_0 L} = \frac{1}{R_s + j\omega_0 L} \cdot \frac{R_s - j\omega_0 L}{R_s - j\omega_0 L} \\
 +
& = \frac{R_s - j\omega L}{R_s^2 + \omega_0^2 L^2} = \frac{R_s}{R_s^2 + \omega_0^2 L^2} - \frac{j\omega L}{R_s^2 + \omega_0^2 L^2} \\
 +
& = \frac{1}{R_s}\cdot \frac{1}{1 + \frac{\omega_0^2 L^2}{R_s^2}} + \frac{1}{j\omega_0 L}\cdot \frac{1}{1 + \frac{R_s^2}{\omega_0^2 L^2}} \\
 +
& = \frac{1}{R_s}\cdot \frac{1}{1 + Q_\text{ind}^2} + \frac{1}{j\omega_0 L}\cdot \frac{1}{1 + \frac{1}{Q_\text{ind}^2}} \\
 +
& = \frac{1}{R_p} + \frac{1}{j\omega_0 L^\prime}
 +
\end{align}
 +
</math>|{{EquationRef|7}}}}
 +
 +
Thus, we get:
 +
 +
{{NumBlk|::|<math>
 +
R_p = R_s \cdot \left(1 + Q_\text{ind}^2\right)
 +
</math>|{{EquationRef|8}}}}
 +
 +
{{NumBlk|::|<math>
 +
L^\prime = L \cdot \left(1 + \frac{1}{Q_\text{ind}^2\right)}
 +
</math>|{{EquationRef|9}}}}

Revision as of 11:30, 26 March 2021

Passive RLC filters are simple and easy to design and use. However, can we implement them on-chip? Let us look at a simple example to give us a bit more insight regarding this question.

Example: A passive band-pass filter

Consider the filter shown in Fig. 1.

We can write the transfer function as:

 

 

 

 

(1)

If we let and , then we can rewrite our expression for as:

 

 

 

 

(2)

Notice that the transfer function has two zeros, , and two poles located at:

 

 

 

 

(3)

We get complex conjugate poles if or when , or equivalently, when . If the band-pass filter has , , and :

 

 

 

 

(4)

 

 

 

 

(5)

Let us now consider a lossy inductor with . The loss can then be modeled by the series resistance, , as shown in Fig. 2, with:

 

 

 

 

(6)

We can convert the series RL circuit to its parallel circuit equivalent in Fig. 3 for frequencies around by first writing out the admittance of the series RL circuit as:

 

 

 

 

(7)

Thus, we get:

 

 

 

 

(8)

 

 

 

 

(9)