Difference between revisions of "The Data Processing Inequality"

From Microlab Classes
Jump to navigation Jump to search
Line 21: Line 21:
  
 
{{NumBlk|::|<math>P\left(x, z\mid y\right) = \frac{P\left(z\mid y\right)\cdot P\left(y\mid x\right) \cdot P\left(x\right)}{P\left(y\right)}</math>|{{EquationRef|5}}}}
 
{{NumBlk|::|<math>P\left(x, z\mid y\right) = \frac{P\left(z\mid y\right)\cdot P\left(y\mid x\right) \cdot P\left(x\right)}{P\left(y\right)}</math>|{{EquationRef|5}}}}
 +
 +
Since <math>P\left(y,x\right)=P\left(y\mid x\right)\cdot P\left(x\right)</math>, we can write:
 +
 +
{{NumBlk|::|<math>P\left(x, z\mid y\right) = \frac{P\left(z\mid y\right)\cdot P\left(y, x\right)}{P\left(y\right)}</math>|{{EquationRef|6}}}}
  
 
== The Data Processing Inequality ==
 
== The Data Processing Inequality ==

Revision as of 10:29, 23 October 2020

Markovity

A Markov Chain is a random process that describes a sequence of possible events where the probability of each event depends only on the outcome of the previous event. Thus, we say that is a Markov chain in this order, denoted as:

 

 

 

 

(1)

If we can write:

 

 

 

 

(2)

Or in a more compact form:

 

 

 

 

(3)

We can use Markov chains to model how a signal is corrupted when passed through noisy channels. For example, if is a binary signal, it can change with a certain probability, to , and it can again be corrupted to produce .

Consider the joint probability . We can express this as:

 

 

 

 

(4)

And if , we get:

 

 

 

 

(5)

Since , we can write:

 

 

 

 

(6)

The Data Processing Inequality

Sufficient Statistics

Fano's Inequality