Difference between revisions of "Integrators"

From Microlab Classes
Jump to navigation Jump to search
(Created page with "Integrators... == The Ideal Integrator == == Integrator Non-Idealities == === Finite Gain === === Non-Dominant Poles ===")
 
Line 1: Line 1:
Integrators...
+
== The Ideal Integrator ==
 +
The ideal integrator, shown in Fig. 1., makes use of an ideal operational amplifier with <math>A_v\rightarrow\infty</math>, <math>R_i\rightarrow\infty</math>, and <math>R_o=0</math>. The current through the resistor, <math>i_R</math>, can be expressed as:
 +
 
 +
{{NumBlk|::|<math>
 +
i_R = \frac{v_i}{R} = i_C = -C\cdot\frac{\partial v_o}{\partial t}
 +
</math>|{{EquationRef|1}}}}
 +
 
 +
Thus, we can write the integrator output voltage, <math>v_o</math>, as:
 +
 
 +
{{NumBlk|::|<math>
 +
v_o = -\frac{1}{RC}\int v_i\cdot dt
 +
</math>|{{EquationRef|2}}}}
 +
 
 +
In the Laplace domain:
 +
 
 +
{{NumBlk|::|<math>
 +
\frac{v_i\left(s\right)}{R} = -sC\cdot v_o\left(s\right)
 +
</math>|{{EquationRef|3}}}}
  
== The Ideal Integrator ==
+
Or equivalently:
 +
 
 +
{{NumBlk|::|<math>
 +
\frac{v_o\left(s\right)}{v_i\left(s\right)} = -\frac{1}{sRC}
 +
</math>|{{EquationRef|4}}}}
 +
 
 +
== Integrator Noise ==
  
 
== Integrator Non-Idealities ==
 
== Integrator Non-Idealities ==
Line 8: Line 31:
  
 
=== Non-Dominant Poles ===
 
=== Non-Dominant Poles ===
 +
 +
=== Capacitor Non-Idealities ===

Revision as of 16:06, 1 April 2021

The Ideal Integrator

The ideal integrator, shown in Fig. 1., makes use of an ideal operational amplifier with , , and . The current through the resistor, , can be expressed as:

 

 

 

 

(1)

Thus, we can write the integrator output voltage, , as:

 

 

 

 

(2)

In the Laplace domain:

 

 

 

 

(3)

Or equivalently:

 

 

 

 

(4)

Integrator Noise

Integrator Non-Idealities

Finite Gain

Non-Dominant Poles

Capacitor Non-Idealities