Difference between revisions of "Integrators"
Jump to navigation
Jump to search
(Created page with "Integrators... == The Ideal Integrator == == Integrator Non-Idealities == === Finite Gain === === Non-Dominant Poles ===") |
|||
Line 1: | Line 1: | ||
− | + | == The Ideal Integrator == | |
+ | The ideal integrator, shown in Fig. 1., makes use of an ideal operational amplifier with <math>A_v\rightarrow\infty</math>, <math>R_i\rightarrow\infty</math>, and <math>R_o=0</math>. The current through the resistor, <math>i_R</math>, can be expressed as: | ||
+ | |||
+ | {{NumBlk|::|<math> | ||
+ | i_R = \frac{v_i}{R} = i_C = -C\cdot\frac{\partial v_o}{\partial t} | ||
+ | </math>|{{EquationRef|1}}}} | ||
+ | |||
+ | Thus, we can write the integrator output voltage, <math>v_o</math>, as: | ||
+ | |||
+ | {{NumBlk|::|<math> | ||
+ | v_o = -\frac{1}{RC}\int v_i\cdot dt | ||
+ | </math>|{{EquationRef|2}}}} | ||
+ | |||
+ | In the Laplace domain: | ||
+ | |||
+ | {{NumBlk|::|<math> | ||
+ | \frac{v_i\left(s\right)}{R} = -sC\cdot v_o\left(s\right) | ||
+ | </math>|{{EquationRef|3}}}} | ||
− | == | + | Or equivalently: |
+ | |||
+ | {{NumBlk|::|<math> | ||
+ | \frac{v_o\left(s\right)}{v_i\left(s\right)} = -\frac{1}{sRC} | ||
+ | </math>|{{EquationRef|4}}}} | ||
+ | |||
+ | == Integrator Noise == | ||
== Integrator Non-Idealities == | == Integrator Non-Idealities == | ||
Line 8: | Line 31: | ||
=== Non-Dominant Poles === | === Non-Dominant Poles === | ||
+ | |||
+ | === Capacitor Non-Idealities === |
Revision as of 16:06, 1 April 2021
Contents
The Ideal Integrator
The ideal integrator, shown in Fig. 1., makes use of an ideal operational amplifier with , , and . The current through the resistor, , can be expressed as:
-
(1)
-
Thus, we can write the integrator output voltage, , as:
-
(2)
-
In the Laplace domain:
-
(3)
-
Or equivalently:
-
(4)
-