|
|
Line 40: |
Line 40: |
| R_s = \frac{\omega_0 L}{Q_\text{ind}} = \frac{2\pi \cdot \left(1\,\mathrm{kHz}\right) \cdot \left(398\,\mathrm{\mu H}\right)}{40} = 0.0625\,\mathrm{\Omega} | | R_s = \frac{\omega_0 L}{Q_\text{ind}} = \frac{2\pi \cdot \left(1\,\mathrm{kHz}\right) \cdot \left(398\,\mathrm{\mu H}\right)}{40} = 0.0625\,\mathrm{\Omega} |
| </math>|{{EquationRef|6}}}} | | </math>|{{EquationRef|6}}}} |
| + | |
| + | We can convert the series RL circuit to its parallel circuit equivalent in Fig. 3 for frequencies around <math>\omega_0</math> by first writing out the admittance of the series RL circuit as: |
| + | |
| + | {{NumBlk|::|<math> |
| + | \begin{align} |
| + | Y & = \frac{1}{R_s + j\omega_0 L} = \frac{1}{R_s + j\omega_0 L} \cdot \frac{R_s - j\omega_0 L}{R_s - j\omega_0 L} \\ |
| + | & = \frac{R_s - j\omega L}{R_s^2 + \omega_0^2 L^2} = \frac{R_s}{R_s^2 + \omega_0^2 L^2} - \frac{j\omega L}{R_s^2 + \omega_0^2 L^2} \\ |
| + | & = \frac{1}{R_s}\cdot \frac{1}{1 + \frac{\omega_0^2 L^2}{R_s^2}} + \frac{1}{j\omega_0 L}\cdot \frac{1}{1 + \frac{R_s^2}{\omega_0^2 L^2}} \\ |
| + | & = \frac{1}{R_s}\cdot \frac{1}{1 + Q_\text{ind}^2} + \frac{1}{j\omega_0 L}\cdot \frac{1}{1 + \frac{1}{Q_\text{ind}^2}} \\ |
| + | & = \frac{1}{R_p} + \frac{1}{j\omega_0 L^\prime} |
| + | \end{align} |
| + | </math>|{{EquationRef|7}}}} |
| + | |
| + | Thus, we get: |
| + | |
| + | {{NumBlk|::|<math> |
| + | R_p = R_s \cdot \left(1 + Q_\text{ind}^2\right) |
| + | </math>|{{EquationRef|8}}}} |
| + | |
| + | {{NumBlk|::|<math> |
| + | L^\prime = L \cdot \left(1 + \frac{1}{Q_\text{ind}^2\right)} |
| + | </math>|{{EquationRef|9}}}} |
Revision as of 11:30, 26 March 2021
Passive RLC filters are simple and easy to design and use. However, can we implement them on-chip? Let us look at a simple example to give us a bit more insight regarding this question.
Example: A passive band-pass filter
Consider the filter shown in Fig. 1.
We can write the transfer function as:
-
|
|
(1)
|
If we let and , then we can rewrite our expression for as:
-
|
|
(2)
|
Notice that the transfer function has two zeros, , and two poles located at:
-
|
|
(3)
|
We get complex conjugate poles if or when , or equivalently, when . If the band-pass filter has , , and :
-
|
|
(4)
|
-
|
|
(5)
|
Let us now consider a lossy inductor with . The loss can then be modeled by the series resistance, , as shown in Fig. 2, with:
-
|
|
(6)
|
We can convert the series RL circuit to its parallel circuit equivalent in Fig. 3 for frequencies around by first writing out the admittance of the series RL circuit as:
-
|
|
(7)
|
Thus, we get:
-
|
|
(8)
|
-