Difference between revisions of "Active Filters"
Jump to navigation
Jump to search
Line 25: | Line 25: | ||
</math>|{{EquationRef|3}}}} | </math>|{{EquationRef|3}}}} | ||
− | We get complex conjugate poles if | + | We get complex conjugate poles if <math>4\omega_0^2>\tfrac{\omega_0^2}{Q^2}</math> or when <math>Q^2>\tfrac{1}{4}</math>, or equivalently, when <math>Q>\tfrac{1}{2}</math>. If the band-pass filter has <math>\omega_0=2\pi \cdot \left(1\,\mathrm{kHz}\right)</math>, <math>Q=20</math>, and <math>R=50\,\mathrm{\Omega}</math>: |
+ | |||
+ | {{NumBlk|::|<math> | ||
+ | L = \frac{R}{\omega_0 Q} = \frac{50\,\mathrm{\Omega}}{2\pi \cdot \left(1\,\mathrm{kHz}\right) \cdot 20} = 398\,\mathrm{\mu H} | ||
+ | </math>|{{EquationRef|4}}}} | ||
+ | |||
+ | {{NumBlk|::|<math> | ||
+ | C = \frac{Q}{\omega_0 R} = \frac{20}{2\pi \cdot \left(1\,\mathrm{kHz}\right) \cdot \left(50\,\mathrm{\Omega}\right)} = 64\,\mathrm{\mu F} | ||
+ | </math>|{{EquationRef|5}}}} | ||
+ | |||
+ | Let us now consider a lossy inductor with <math>Q_\text{ind}= 40=\tfrac{\omega_0 L}{R_s}</math>. The loss can then be modeled by the series resistance, <math>R_s</math>, as shown in Fig. 2, with: | ||
+ | |||
+ | {{NumBlk|::|<math> | ||
+ | R_s = \frac{\omega_0 L}{Q_\text{ind}} = \frac{2\pi \cdot \left(1\,\mathrm{kHz}\right) \cdot \left(398\,\mathrm{\mu H}\right)}{40} = 0.0625\,\mathrm{\Omega} | ||
+ | </math>|{{EquationRef|6}}}} |
Revision as of 21:05, 24 March 2021
Passive RLC filters are simple and easy to design and use. However, can we implement them on-chip? Let us look at a simple example to give us a bit more insight regarding this question.
Example: A passive band-pass filter
Consider the filter shown in Fig. 1.
We can write the transfer function as:
-
(1)
-
If we let and , then we can rewrite our expression for as:
-
(2)
-
Notice that the transfer function has two zeros, , and two poles located at:
-
(3)
-
We get complex conjugate poles if or when , or equivalently, when . If the band-pass filter has , , and :
-
(4)
-
-
(5)
-
Let us now consider a lossy inductor with . The loss can then be modeled by the series resistance, , as shown in Fig. 2, with:
-
(6)
-