Difference between revisions of "Active Filters"

From Microlab Classes
Jump to navigation Jump to search
Line 25: Line 25:
 
</math>|{{EquationRef|3}}}}
 
</math>|{{EquationRef|3}}}}
  
We get complex conjugate poles if
+
We get complex conjugate poles if <math>4\omega_0^2>\tfrac{\omega_0^2}{Q^2}</math> or when <math>Q^2>\tfrac{1}{4}</math>, or equivalently, when <math>Q>\tfrac{1}{2}</math>. If the band-pass filter has <math>\omega_0=2\pi \cdot \left(1\,\mathrm{kHz}\right)</math>, <math>Q=20</math>, and <math>R=50\,\mathrm{\Omega}</math>:
 +
 
 +
{{NumBlk|::|<math>
 +
L = \frac{R}{\omega_0 Q} = \frac{50\,\mathrm{\Omega}}{2\pi \cdot \left(1\,\mathrm{kHz}\right) \cdot 20} = 398\,\mathrm{\mu H}
 +
</math>|{{EquationRef|4}}}}
 +
 
 +
{{NumBlk|::|<math>
 +
C = \frac{Q}{\omega_0 R} = \frac{20}{2\pi \cdot \left(1\,\mathrm{kHz}\right) \cdot \left(50\,\mathrm{\Omega}\right)} = 64\,\mathrm{\mu F}
 +
</math>|{{EquationRef|5}}}}
 +
 
 +
Let us now consider a lossy inductor with <math>Q_\text{ind}= 40=\tfrac{\omega_0 L}{R_s}</math>. The loss can then be modeled by the series resistance, <math>R_s</math>, as shown in Fig. 2, with:
 +
 
 +
{{NumBlk|::|<math>
 +
R_s = \frac{\omega_0 L}{Q_\text{ind}} = \frac{2\pi \cdot \left(1\,\mathrm{kHz}\right) \cdot \left(398\,\mathrm{\mu H}\right)}{40} = 0.0625\,\mathrm{\Omega}
 +
</math>|{{EquationRef|6}}}}

Revision as of 21:05, 24 March 2021

Passive RLC filters are simple and easy to design and use. However, can we implement them on-chip? Let us look at a simple example to give us a bit more insight regarding this question.

Example: A passive band-pass filter

Consider the filter shown in Fig. 1.

We can write the transfer function as:

 

 

 

 

(1)

If we let and , then we can rewrite our expression for as:

 

 

 

 

(2)

Notice that the transfer function has two zeros, , and two poles located at:

 

 

 

 

(3)

We get complex conjugate poles if or when , or equivalently, when . If the band-pass filter has , , and :

 

 

 

 

(4)

 

 

 

 

(5)

Let us now consider a lossy inductor with . The loss can then be modeled by the series resistance, , as shown in Fig. 2, with:

 

 

 

 

(6)