Difference between revisions of "Butterworth Filters"

From Microlab Classes
Jump to navigation Jump to search
Line 1: Line 1:
 +
[[File:Butterworth mag.svg|thumb|400px|Figure 1: The Butterworth low-pass filter with <math>N=5</math>.]]
 +
 
Butterworth filters are a class of ''all-pole filters'', where the poles of the normalized transfer function are equally spaced along the unit circle (<math>\omega_0 = 1\,\text{rad/s}</math>). This results in a '''maximally flat''' pass-band magnitude response, or equivalently:
 
Butterworth filters are a class of ''all-pole filters'', where the poles of the normalized transfer function are equally spaced along the unit circle (<math>\omega_0 = 1\,\text{rad/s}</math>). This results in a '''maximally flat''' pass-band magnitude response, or equivalently:
  

Revision as of 17:23, 15 March 2021

Figure 1: The Butterworth low-pass filter with .

Butterworth filters are a class of all-pole filters, where the poles of the normalized transfer function are equally spaced along the unit circle (). This results in a maximally flat pass-band magnitude response, or equivalently:

 

 

 

 

(1)

This means that the derivative of the magnitude at DC is zero.

The Low-Pass Butterworth Filter

The low-pass Butterworth filter has the following magnitude response:

 

 

 

 

(2)

Where is the filter order and is the frequency. Note that at . Thus:

 

 

 

 

(3)

Thus, the poles are the roots of:

 

 

 

 

(4)

Or equivalently:

 

 

 

 

(5)

Since we can write , the roots of can be written as:

 

 

 

 

(6)

For . Thus, we get:

 

 

 

 

(7)

Solving for , we get the poles of the low-pass Butterworth filter:

 

 

 

 

(8)

We can then write:

 

 

 

 

(9)