Difference between revisions of "EE 220"
Jump to navigation
Jump to search
(26 intermediate revisions by the same user not shown) | |||
Line 14: | Line 14: | ||
! scope="col"| Topics | ! scope="col"| Topics | ||
! scope="col"| Outcomes | ! scope="col"| Outcomes | ||
− | ! scope="col"| | + | ! scope="col"| Resources |
! scope="col"| Activities | ! scope="col"| Activities | ||
|- | |- | ||
Line 28: | Line 28: | ||
| | | | ||
* Video: Silicon Run I (1996) [https://www.youtube.com/watch?v=3XTWXRj24GM Youtube link] | * Video: Silicon Run I (1996) [https://www.youtube.com/watch?v=3XTWXRj24GM Youtube link] | ||
− | * | + | * [[ngspice Tutorial]] |
| | | | ||
− | * [[220-A1.1]]: IC | + | * [[220-A1.1]]: IC fabrication |
− | * [[220-A1.2]]: | + | * [[220-A1.2]]: A Wideband Voltage Divider Circuit |
|- | |- | ||
− | | 2 | + | | style="text-align:center;" | 2 |
| | | | ||
[[Passive CMOS Devices]] | [[Passive CMOS Devices]] | ||
Line 44: | Line 44: | ||
| | | | ||
* Spyder IDE [https://www.spyder-ide.org/ website] | * Spyder IDE [https://www.spyder-ide.org/ website] | ||
+ | * [[Using Python with ngspice]] | ||
| | | | ||
− | * [[220-A2.1]]: | + | * [[220-A2.1]]: Integrated Resistors and Capacitors |
|- | |- | ||
− | | 3 | + | | style="text-align:center;" | 3 |
| | | | ||
[[MOS Transistors]] | [[MOS Transistors]] | ||
− | |||
* Transistor Models | * Transistor Models | ||
+ | * Short-Channel Effects | ||
| | | | ||
* Identify, model, and analyze the effects of CMOS process parameters on the characteristics of MOS transistors. | * Identify, model, and analyze the effects of CMOS process parameters on the characteristics of MOS transistors. | ||
Line 57: | Line 58: | ||
| | | | ||
* Arizona State University Predictive Technology Models (PTM) [http://ptm.asu.edu/ website] | * Arizona State University Predictive Technology Models (PTM) [http://ptm.asu.edu/ website] | ||
+ | * SkyWater [[SKY130 Models]] (130nm CMOS) | ||
| | | | ||
* [[220-A3.1]]: MOS characteristic curves simulation | * [[220-A3.1]]: MOS characteristic curves simulation | ||
− | * [[220-A3.2]]: MOS | + | * [[220-A3.2]]: Extracting MOS small-signal parameters |
− | * [[220-A3.3]]: | + | * [[220-A3.3]]: The MOS transition frequency |
|- | |- | ||
− | | 4 | + | | style="text-align:center;" | 4 |
| | | | ||
− | [[Model-Based Design]] | + | [[Model-Based Analog Circuit Design]] |
+ | * Small-Signal Model | ||
+ | * <math>\tfrac{g_m}{I_D}</math> and <math>V^*</math> | ||
| | | | ||
− | * Design simple single-transistor amplifiers using SPICE models as | + | * Design simple single-transistor amplifiers using SPICE models as an alternative to closed-form models. |
* Verify these designs via circuit simulation. | * Verify these designs via circuit simulation. | ||
| | | | ||
| | | | ||
− | * [[220-A4.1]]: Design a | + | * [[220-A4.1]]: MOS Intrinsic Gain |
+ | * [[220-A4.2]]: Simulating <math>\tfrac{g_m}{I_D}</math> | ||
+ | * [[220-A4.3]]: Design of a Simple Common-Source Amplifier | ||
|- | |- | ||
− | | 5 | + | | style="text-align:center;" | 5 |
| | | | ||
[[Electronic Noise]] | [[Electronic Noise]] | ||
− | * | + | * [[Resistor Noise]] |
− | * | + | * [[Diode and Transistor Noise]] |
− | * | + | * [[EE 220 Noise Analysis | Noise Analysis]] |
− | |||
| | | | ||
* Identify the fundamental types of electronic noise and differentiate one noise type from another. | * Identify the fundamental types of electronic noise and differentiate one noise type from another. | ||
Line 89: | Line 94: | ||
* [[220-A5.2]]: Amplifier output noise and input-referred noise | * [[220-A5.2]]: Amplifier output noise and input-referred noise | ||
|- | |- | ||
− | | 6 | + | | style="text-align:center;" | 6 |
| | | | ||
[[Operational Transconductance Amplifiers (OTAs)]] | [[Operational Transconductance Amplifiers (OTAs)]] | ||
Line 102: | Line 107: | ||
* [[220-A6.1]]: Transient response of an OTA with capacitive feedback | * [[220-A6.1]]: Transient response of an OTA with capacitive feedback | ||
|- | |- | ||
− | | 7 | + | | style="text-align:center;" | 7 |
| | | | ||
[[Differential Circuits]] | [[Differential Circuits]] | ||
Line 119: | Line 124: | ||
* [[220-A7.3]]: Input-referred offset | * [[220-A7.3]]: Input-referred offset | ||
|- | |- | ||
− | | 8 | + | | style="text-align:center;" | 8 |
| | | | ||
[[Current Mirrors]] | [[Current Mirrors]] | ||
Line 134: | Line 139: | ||
* [[220-A8.3]]: Basic common-mode feedback circuits | * [[220-A8.3]]: Basic common-mode feedback circuits | ||
|- | |- | ||
− | | 9 | + | | style="text-align:center;" | 9 |
| | | | ||
[[The Folded-Cascode OTA]] | [[The Folded-Cascode OTA]] | ||
Line 149: | Line 154: | ||
* [[220-A9.2]]: Folded-cascode small- and large-signal gain | * [[220-A9.2]]: Folded-cascode small- and large-signal gain | ||
|- | |- | ||
− | | 10 | + | | style="text-align:center;" | 10 |
| | | | ||
[[Feedback and Stability]] | [[Feedback and Stability]] | ||
Line 162: | Line 167: | ||
* [[220-A10.1]]: Folded-cascode OTA loop gain | * [[220-A10.1]]: Folded-cascode OTA loop gain | ||
|- | |- | ||
− | | 11 | + | | style="text-align:center;" | 11 |
| | | | ||
[[Amplifier Settling]] | [[Amplifier Settling]] | ||
Line 175: | Line 180: | ||
* [[220-A11.2]]: Folded-cascode OTA linear and non-linear settling | * [[220-A11.2]]: Folded-cascode OTA linear and non-linear settling | ||
|- | |- | ||
− | | 12 | + | | style="text-align:center;" | 12 |
| | | | ||
[[An Amplifier Design Example]] | [[An Amplifier Design Example]] | ||
Line 185: | Line 190: | ||
* [[220-A12.1]]: Folded-cascode OTA design mini-project | * [[220-A12.1]]: Folded-cascode OTA design mini-project | ||
|- | |- | ||
− | | 13 | + | | style="text-align:center;" | 13 |
| | | | ||
[[EE 220 Project]] | [[EE 220 Project]] | ||
Line 196: | Line 201: | ||
* [[220-A13.1]]: Design project specifications | * [[220-A13.1]]: Design project specifications | ||
|- | |- | ||
− | | 14 | + | | style="text-align:center;" | 14 |
| | | | ||
[[EE 220 Project]] | [[EE 220 Project]] |
Latest revision as of 11:20, 11 October 2021
- Analog Integrated Circuits
- Semester Offered: 1st semester
- Course Credit: Lecture: 4 units (3 units lecture, 1 unit lab)
Catalog Description
Integrated circuit devices and modeling. Noise analysis and modeling. Review of basic operational amplifier design and compensation. Advanced current mirrors and operational amplifiers. Operational transconductance amplifiers. Common-mode feedback circuits. Comparators. Sample and holds. Voltage references and translinear circuits. Discrete-time signals. Switched-capacitor circuits. Co-req: CoE 143 or equiv. 6h (3 lec, 3 lab) 4 u.
Syllabus
Module | Topics | Outcomes | Resources | Activities |
---|---|---|---|---|
1 |
CMOS Technology and Fabrication
|
|
|
|
2 |
|
|
|
|
3 |
|
|
|
|
4 |
Model-Based Analog Circuit Design
|
|
||
5 |
|
|||
6 |
Operational Transconductance Amplifiers (OTAs)
|
|
| |
7 |
|
|
||
8 |
|
|
||
9 |
|
|
||
10 |
|
|
| |
11 |
|
|
||
12 |
|
| ||
13 |
|
|
| |
14 |
|
|
References
- Gray, Hurst, Lewis, Meyer, Analysis & Design of Analog Integrated Circuits, Wiley 2001.
- Johns, Martin, Analog Integrated Circuit Design, Wiley 1997.
- Design of Analog CMOS Integrated Circuits, Behzad Razavi, McGraw-Hill, 2000.
- The Design of CMOS Radio-Frequency Integrated Circuits, Thomas H. Lee, 2nd Ed., Cambridge University Press, 2003.
- The Designers Guide to SPICE & SPECTRE, K. S. Kundert, Kluwer Academic Press, 1995.
- Operation and Modeling of the MOS Transistor, Y. Tsividis, McGraw-Hill, 2nd Edition, 1999.