Difference between revisions of "Butterworth Filters"

From Microlab Classes
Jump to navigation Jump to search
Line 14: Line 14:
 
</math>|{{EquationRef|2}}}}
 
</math>|{{EquationRef|2}}}}
  
Where <math>N</math> is the filter order and <math>\omega_0</math> is the <math>-3\,\text{dB}</math> frequency. Note that <math>\left|H\left(j\omega\right)\right|^2 = \left|H\left(s\right)\right|^2 = H\left(s\right)\cdot H^*\!\left(s\right)</math> at <math>s=j\omega</math>. Thus:
+
Where <math>N</math> is the filter order and <math>\omega_0</math> is the <math>-3\,\text{dB}</math> frequency. Note that <math>\left|H\left(j\omega\right)\right|^2 = \left|H\left(s\right)\right|^2 = H\left(s\right)\cdot H^*\!\left(s\right) = H\left(s\right)\cdot H\left(-s\right)</math> at <math>s=j\omega</math>. Thus:
  
 
{{NumBlk|::|<math>
 
{{NumBlk|::|<math>
H\left(s\right)\cdot H^*\left(s\right) = \frac{1}{1+\left(\frac{-s^2}{\omega_0^2}\right)^{N}}
+
H\left(s\right)\cdot H\left(-s\right) = \frac{1}{1+\left(\frac{-s^2}{\omega_0^2}\right)^{N}}
 
</math>|{{EquationRef|3}}}}
 
</math>|{{EquationRef|3}}}}
 +
 +
Thus, the poles are the roots of:
 +
 +
{{NumBlk|::|<math>
 +
1+\left(\frac{-s^2}{\omega_0^2}\right)^{N}=0
 +
</math>|{{EquationRef|4}}}}
 +
 +
Or equivalently:
 +
 +
{{NumBlk|::|<math>
 +
\frac{-s^2}{\omega_0^2}=\left(-1\right)^{\frac{1}{N}}
 +
</math>|{{EquationRef|5}}}}
 +
 +
Since we can write <math>-1=e^{j\pi}</math>, the <math>N^\text{th}</math> root of <math>-1</math> can also be written as:
 +
 +
{{NumBlk|::|<math>
 +
\left(-1\right)^{\frac{1}{N}} = e^{j\pi\frac{2k-1}{N}}
 +
</math>|{{EquationRef|6}}}}

Revision as of 16:51, 15 March 2021

Butterworth filters are a class of all-pole filters, where the poles of the normalized transfer function are equally spaced along the unit circle (). This results in a maximally flat pass-band magnitude response, or equivalently:

 

 

 

 

(1)

This means that the derivative of the magnitude at DC is zero.

The Low-Pass Butterworth Filter

The low-pass Butterworth filter has the following magnitude response:

 

 

 

 

(2)

Where is the filter order and is the frequency. Note that at . Thus:

 

 

 

 

(3)

Thus, the poles are the roots of:

 

 

 

 

(4)

Or equivalently:

 

 

 

 

(5)

Since we can write , the root of can also be written as:

 

 

 

 

(6)