Difference between revisions of "220-A1.2"

From Microlab Classes
Jump to navigation Jump to search
Line 6: Line 6:
 
One way to build high-speed circuits with relatively large input impedances and capacitances is to use a simple RC voltage divider, as shown in the figure below. This RC divider is commonly found in oscilloscope 10X probes.
 
One way to build high-speed circuits with relatively large input impedances and capacitances is to use a simple RC voltage divider, as shown in the figure below. This RC divider is commonly found in oscilloscope 10X probes.
  
Let <math>Z_1 = R_1 \| \frac{1}{j\omega C_1}</math> and <math>Z_2 = R_2 \| \frac{1}{j\omega C_2}</math>, then the output voltage can be expressed as:
+
Let <math>Z_1 = R_1 \| \frac{1}{s C_1} = \frac{R_1}{1 + s R_1 C_1}</math> and similarly <math>Z_2 = \frac{R_2}{1 + s R_2 C_2}</math>. Thus, the output voltage can be expressed as:
  
 
{{NumBlk|::|<math>v_{out}=\frac{Z_2}{Z_1 + Z_2}\cdot v_{in}</math>|{{EquationRef|1}}}}
 
{{NumBlk|::|<math>v_{out}=\frac{Z_2}{Z_1 + Z_2}\cdot v_{in}</math>|{{EquationRef|1}}}}

Revision as of 10:06, 7 August 2020

  • Activity: Simulating simple RLC circuits
  • At the end of this activity, the student should be able to:
  1. Run DC, AC, and transient simulations using ngspice.

A Wideband RC Voltage Divider

One way to build high-speed circuits with relatively large input impedances and capacitances is to use a simple RC voltage divider, as shown in the figure below. This RC divider is commonly found in oscilloscope 10X probes.

Let and similarly . Thus, the output voltage can be expressed as:

 

 

 

 

(1)

A Lossy LC Tank

A Simple Switched-Capacitor Circuit