Difference between revisions of "Entropy, Relative Entropy, Mutual Information"
Jump to navigation
Jump to search
Line 19: | Line 19: | ||
* The entropy of a random variable is a measure of the uncertainty of the random variable | * The entropy of a random variable is a measure of the uncertainty of the random variable | ||
** it is a measure of the amount of information required on the average to describe the random variable | ** it is a measure of the amount of information required on the average to describe the random variable | ||
− | + | {{Note|Foo}} | |
{{Note|Uniform distributions have the highest uncertainties.}} | {{Note|Uniform distributions have the highest uncertainties.}} | ||
Revision as of 19:51, 26 June 2020
Contents
Definitions
Entropy
- a measure of the uncertainty of a random variable
- The entropy of a random variable is a measure of the uncertainty of the random variable
- it is a measure of the amount of information required on the average to describe the random variable
Relative Entropy
- a measure of the distance between two distributions
- a measure of the inefficiency of assuming that the distribution is when the true distribution is .
Mutual Information
- a measure of the amount of information that one random variable contains about another random variable
Entropy
Definitions:
- Shannon entropy
- a measure of the uncertainty of a random variable
- The entropy of a random variable is a measure of the uncertainty of the random variable
- it is a measure of the amount of information required on the average to describe the random variable
Foo
Uniform distributions have the highest uncertainties.
The entropy of a discrete random variable, , is
-
(1)
where has a probability mass function (pmf), , and an alphabet .
Expected Value
For a discrete random variable, , with probability mass function, , the expected value of is
-
(2)
For a discrete random variable, , with probability mass function, , the expected value of is
-
(3)
Consider the case where . We get
-
(4)
Lemma 1: Entropy is greater than or equal to zero
-
(5)
Proof: Since , then , and subsequently, . Thus from Eq. (4) we get .
Lemma 2: Changing the logarithm base
-
(6)
Proof:
- Given that
- And since
- We get
Note that the entropy, , has units of bits for , or nats (natural units) for , or dits (decimal digits) for .
Joint Entropy
Definition:
- a measure of the uncertainty associated with a set of variables
The joint entropy of a pair of discrete random variables with joint pmf is defined as
-
(7)