Difference between revisions of "161-A3.1"
Jump to navigation
Jump to search
Line 54: | Line 54: | ||
We get: | We get: | ||
− | {{NumBlk|::|<math>H\left(X\right) = \frac{1}{2}\log_2 2 + \frac{1}{4}\log_2 4 +\frac{1}{8}\log_2 8 +\frac{1}{8}\log_2 8 = \frac{7}{4}\,\mathrm{bits}</math>|{{EquationRef|4}}}} | + | {{NumBlk|::|<math>H\left(X\right) = \frac{1}{2}\log_2 2 + \frac{1}{4}\log_2 4 +\frac{1}{8}\log_2 8 +\frac{1}{8}\log_2 8 = \frac{7}{4}\,\mathrm{bits}=1.75\,\mathrm{bits}</math>|{{EquationRef|4}}}} |
{{NumBlk|::|<math>H\left(Y\right) = \frac{1}{4}\log_2 4 + \frac{1}{4}\log_2 4 +\frac{1}{4}\log_2 4 +\frac{1}{4}\log_2 4 = 2\,\mathrm{bits}</math>|{{EquationRef|5}}}} | {{NumBlk|::|<math>H\left(Y\right) = \frac{1}{4}\log_2 4 + \frac{1}{4}\log_2 4 +\frac{1}{4}\log_2 4 +\frac{1}{4}\log_2 4 = 2\,\mathrm{bits}</math>|{{EquationRef|5}}}} | ||
Line 65: | Line 65: | ||
=\sum_{i=1}^4 \sum_{j=1}^4 P\left(x_i, y_j\right)\cdot\log_2\left(\frac{P\left(x_i\right)}{P\left(x_i, y_j\right)}\right)=\frac{13}{8}\,\mathrm{bits}=1.625\,\mathrm{bits}</math>|{{EquationRef|7}}}} | =\sum_{i=1}^4 \sum_{j=1}^4 P\left(x_i, y_j\right)\cdot\log_2\left(\frac{P\left(x_i\right)}{P\left(x_i, y_j\right)}\right)=\frac{13}{8}\,\mathrm{bits}=1.625\,\mathrm{bits}</math>|{{EquationRef|7}}}} | ||
− | Note that <math>H\left(X\mid Y\right)\ne H\left(Y\mid X\right)</math>. | + | Note that <math>H\left(X\mid Y\right)\ne H\left(Y\mid X\right)</math>. Calculating the mutual information, we get: |
+ | |||
+ | {{NumBlk|::|<math>I\left(A;B\right)=H\left(X\right)-H\left(X\mid Y\right)=\frac{7}{4}-\frac{11}{8}=0.375\,\mathrm{bits}</math>|{{EquationRef|8}}}} | ||
+ | |||
+ | Or equivalently: | ||
+ | |||
+ | {{NumBlk|::|<math>I\left(A;B\right)=H\left(Y\right)-H\left(Y\mid X\right)=2-\frac{13}{8}=0.375\,\mathrm{bits}</math>|{{EquationRef|9}}}} | ||
== Example 2: A Noiseless Binary Channel == | == Example 2: A Noiseless Binary Channel == |
Revision as of 15:51, 29 September 2020
- Activity: Mutual Information and Channel Capacity
- Instructions: In this activity, you are tasked to
- Walk through the examples.
- Calculate the channel capacity of different channel models.
- Should you have any questions, clarifications, or issues, please contact your instructor as soon as possible.
Contents
Example 1: Mutual Information
Given the following probabilities:
A | B | AB | O | |
---|---|---|---|---|
Very Low | 1/8 | 1/16 | 1/32 | 1/32 |
Low | 1/16 | 1/8 | 1/32 | 1/32 |
Medium | 1/16 | 1/16 | 1/16 | 1/16 |
High | 1/4 | 0 | 0 | 0 |
To get the entropies of and , we need to calculate the marginal probabilities:
-
(1)
-
-
(2)
-
And since:
-
(3)
-
We get:
-
(4)
-
-
(5)
-
Calculating the conditional entropies using:
-
(6)
-
-
(7)
-
Note that . Calculating the mutual information, we get:
-
(8)
-
Or equivalently:
-
(9)
-
Example 2: A Noiseless Binary Channel
Example 3: A Noisy Channel with Non-Overlapping Outputs
Example 4: The Binary Symmetric Channel (BSC)
Sources
- Yao Xie's slides on Entropy and Mutual Information