Difference between revisions of "161-A3.1"
Jump to navigation
Jump to search
Line 52: | Line 52: | ||
{{NumBlk|::|<math>H\left(A\right)=\sum_{i=1}^n P\left(a_i\right)\cdot\log_2\left(\frac{1}{P\left(a_i\right)}\right)</math>|{{EquationRef|3}}}} | {{NumBlk|::|<math>H\left(A\right)=\sum_{i=1}^n P\left(a_i\right)\cdot\log_2\left(\frac{1}{P\left(a_i\right)}\right)</math>|{{EquationRef|3}}}} | ||
− | + | We get: | |
{{NumBlk|::|<math>H\left(X\right) = \frac{1}{2}\log_2 2 + \frac{1}{4}\log_2 4 +\frac{1}{8}\log_2 8 +\frac{1}{8}\log_2 8 = \frac{7}{4}\,\mathrm{bits}</math>|{{EquationRef|4}}}} | {{NumBlk|::|<math>H\left(X\right) = \frac{1}{2}\log_2 2 + \frac{1}{4}\log_2 4 +\frac{1}{8}\log_2 8 +\frac{1}{8}\log_2 8 = \frac{7}{4}\,\mathrm{bits}</math>|{{EquationRef|4}}}} | ||
{{NumBlk|::|<math>H\left(Y\right) = \frac{1}{4}\log_2 4 + \frac{1}{4}\log_2 4 +\frac{1}{4}\log_2 4 +\frac{1}{4}\log_2 4 = 2\,\mathrm{bits}</math>|{{EquationRef|5}}}} | {{NumBlk|::|<math>H\left(Y\right) = \frac{1}{4}\log_2 4 + \frac{1}{4}\log_2 4 +\frac{1}{4}\log_2 4 +\frac{1}{4}\log_2 4 = 2\,\mathrm{bits}</math>|{{EquationRef|5}}}} | ||
− | + | Calculating the conditional entropies using: | |
+ | |||
+ | {{NumBlk|::|<math> H\left(A\mid B\right) | ||
+ | =\sum_{i=1}^n \sum_{j=1}^m P\left(b_j, a_i\right)\cdot\log_2\left(\frac{P\left(b_j\right)}{P\left(b_j, a_i\right)}\right)</math>|{{EquationRef|6}}}} | ||
+ | |||
+ | We get: | ||
+ | |||
+ | |||
== Example 2: A Noiseless Binary Channel == | == Example 2: A Noiseless Binary Channel == |
Revision as of 09:45, 29 September 2020
- Activity: Mutual Information and Channel Capacity
- Instructions: In this activity, you are tasked to
- Walk through the examples.
- Calculate the channel capacity of different channel models.
- Should you have any questions, clarifications, or issues, please contact your instructor as soon as possible.
Contents
Example 1: Mutual Information
Given the following probabilities:
A | B | AB | O | |
---|---|---|---|---|
Very Low | 1/8 | 1/16 | 1/32 | 1/32 |
Low | 1/16 | 1/8 | 1/32 | 1/32 |
Medium | 1/16 | 1/16 | 1/16 | 1/16 |
High | 1/4 | 0 | 0 | 0 |
To get the entropies of and , we need to calculate the marginal probabilities:
-
(1)
-
-
(2)
-
And since:
-
(3)
-
We get:
-
(4)
-
-
(5)
-
Calculating the conditional entropies using:
-
(6)
-
We get:
Example 2: A Noiseless Binary Channel
Example 3: A Noisy Channel with Non-Overlapping Outputs
Example 4: The Binary Symmetric Channel (BSC)
Sources
- Yao Xie's slides on Entropy and Mutual Information