Difference between revisions of "220-A2.1"

From Microlab Classes
Jump to navigation Jump to search
Line 20: Line 20:
 
</source>
 
</source>
  
We can also create a capacitor models using:
+
We can also create a MOM capacitor model, and a metal-to-substrate capacitor model using:
  
 
<source lang="bash">
 
<source lang="bash">
 
.model cmom C cj=50m tc1=30u tnom=27C  
 
.model cmom C cj=50m tc1=30u tnom=27C  
 +
.model cmsub C cj=30m tc1=25u tnom=27C
 
</source>
 
</source>
  
Where '''cmom''' is the model name of the capacitor, '''cj''' is the  
+
Where '''cmom''' is the model name of the capacitor, '''cj''' is the capacitance density, '''tc1''' is the first order temperature coefficient, and '''tnom''' is the nominal temperature. We can then create a subcircuit '''cm''', so every time we instantiate '''cm''', we are including the bottom-plate capacitance in addition to the main capacitance.
  
 +
<source lang="bash">
 +
.subckt cm  top bottom sub  w=1000u l=2000u
 +
C1 top bottom cmom w={w} l={l}
 +
Csub bottom sub cmsub w={w} l={l}
 +
.ends
 +
<source lang="bash">
  
  
 
== Effects of Process Variations ==
 
== Effects of Process Variations ==

Revision as of 07:42, 22 September 2020

Activity: Integrated Resistors and Capacitors

  • Instructions: This activity is structured as a tutorial with a design problem at the end. Should you have any questions, clarifications, or issues, please contact your instructor as soon as possible.
  • At the end of this activity, the student should be able to:
  1. Understand and observe the effects of the fabrication process on passive RC circuits.

Reading Assignment

Go over the Phillip Allen's excellent slides on resistors and inductors and capacitors. Focus on the non-idealities of integrated resistors and capacitors, and how designers can work around these non-idealities to create reliable circuits.

Modeling Integrated RC Circuits

In order to model and simulate integrated resistors and capacitors, we can create semiconductor resistor models in SPICE that contains the sheet resistance of the layer, and the temperature coefficient. Consider an n-type polysilicon resistor, with , and at a nominal temperature, . Let us create a resistor model rpoly_n:

.model rpoly_n R rsh=100 tc1=-800u tnom=27C

Instantiating a resistor using the rpoly_n model, with the appropriate width and length, as:

R1	in out		rpoly_n w=2u l=20u

We can also create a MOM capacitor model, and a metal-to-substrate capacitor model using:

.model cmom C cj=50m tc1=30u tnom=27C 
.model cmsub C cj=30m tc1=25u tnom=27C

Where cmom is the model name of the capacitor, cj is the capacitance density, tc1 is the first order temperature coefficient, and tnom is the nominal temperature. We can then create a subcircuit cm, so every time we instantiate cm, we are including the bottom-plate capacitance in addition to the main capacitance.

<source lang="bash"> .subckt cm top bottom sub w=1000u l=2000u C1 top bottom cmom w={w} l={l} Csub bottom sub cmsub w={w} l={l} .ends <source lang="bash">


Effects of Process Variations