Difference between revisions of "Entropy, Relative Entropy, Mutual Information"

From Microlab Classes
Jump to navigation Jump to search
Line 16: Line 16:
 
The entropy of a discrete random variable, <math>X</math>, is
 
The entropy of a discrete random variable, <math>X</math>, is
  
{{NumBlk|:|<math>H\left(X\right)=-\sum_{x\in \mathcal{X}} p\left(x\right) \log_2 p\left(x\right)</math>|{{EquationRef|1}}}}
+
{{NumBlk|:|<math>H\left(X\right)=-\sum_{x\in \mathcal{X}} p\left(x\right) \cdot\log_2 p\left(x\right)</math>|{{EquationRef|1}}}}
  
 
where <math>X</math> has a probability mass function (pmf), <math>p\left(x\right)</math>, and an alphabet <math>\mathcal{X}</math>.
 
where <math>X</math> has a probability mass function (pmf), <math>p\left(x\right)</math>, and an alphabet <math>\mathcal{X}</math>.
Line 31: Line 31:
 
Consider the case where <math>g\left(x\right)=\log_2\left(\tfrac{1}{p\left(x\right)}\right)</math>. We get
 
Consider the case where <math>g\left(x\right)=\log_2\left(\tfrac{1}{p\left(x\right)}\right)</math>. We get
  
{{NumBlk|:|<math>E\left[\log_2\left(\tfrac{1}{p\left(x\right)}\right)\right]=\sum_{x\in \mathcal{X}} \log_2\left(\tfrac{1}{p\left(x\right)}\right) \cdot p\left(x\right)=-\sum_{x\in \mathcal{X}} p\left(x\right) \log_2 p\left(x\right)=H\left(X\right)</math>|{{EquationRef|4}}}}
+
{{NumBlk|:|<math>E\left[\log_2\left(\tfrac{1}{p\left(x\right)}\right)\right]=\sum_{x\in \mathcal{X}} \log_2\left(\tfrac{1}{p\left(x\right)}\right) \cdot p\left(x\right)=-\sum_{x\in \mathcal{X}} p\left(x\right) \cdot \log_2 p\left(x\right)=H\left(X\right)</math>|{{EquationRef|4}}}}

Revision as of 16:09, 25 June 2020

Definitions

Entropy

  • a measure of the uncertainty of a random variable
  • The entropy of a random variable is a measure of the uncertainty of the random variable
    • it is a measure of the amount of information required on the average to describe the random variable

Relative Entropy

  • a measure of the distance between two distributions
  • a measure of the inefficiency of assuming that the distribution is when the true distribution is .

Mutual Information

  • a measure of the amount of information that one random variable contains about another random variable

Entropy

The entropy of a discrete random variable, , is

 

 

 

 

(1)

where has a probability mass function (pmf), , and an alphabet .

Expected Value

For a discrete random variable, , with probability mass function, , the expected value of is

 

 

 

 

(2)

For a discrete random variable, , with probability mass function, , the expected value of is

 

 

 

 

(3)

Consider the case where . We get

 

 

 

 

(4)