Difference between revisions of "161-A3.1"
Jump to navigation
Jump to search
Line 59: | Line 59: | ||
Calculating the conditional entropies using: | Calculating the conditional entropies using: | ||
− | {{NumBlk|::|<math> H\left( | + | {{NumBlk|::|<math> H\left(X\mid Y\right) |
− | =\sum_{i=1}^ | + | =\sum_{i=1}^4 \sum_{j=1}^4 P\left(x_i, y_j\right)\cdot\log_2\left(\frac{P\left(y_j\right)}{P\left(x_i, y_j\right)}\right)</math>|{{EquationRef|6}}}} |
We get: | We get: |
Revision as of 10:04, 29 September 2020
- Activity: Mutual Information and Channel Capacity
- Instructions: In this activity, you are tasked to
- Walk through the examples.
- Calculate the channel capacity of different channel models.
- Should you have any questions, clarifications, or issues, please contact your instructor as soon as possible.
Contents
Example 1: Mutual Information
Given the following probabilities:
A | B | AB | O | |
---|---|---|---|---|
Very Low | 1/8 | 1/16 | 1/32 | 1/32 |
Low | 1/16 | 1/8 | 1/32 | 1/32 |
Medium | 1/16 | 1/16 | 1/16 | 1/16 |
High | 1/4 | 0 | 0 | 0 |
To get the entropies of and , we need to calculate the marginal probabilities:
-
(1)
-
-
(2)
-
And since:
-
(3)
-
We get:
-
(4)
-
-
(5)
-
Calculating the conditional entropies using:
-
(6)
-
We get:
Example 2: A Noiseless Binary Channel
Example 3: A Noisy Channel with Non-Overlapping Outputs
Example 4: The Binary Symmetric Channel (BSC)
Sources
- Yao Xie's slides on Entropy and Mutual Information