Difference between revisions of "161-A1.1"
Jump to navigation
Jump to search
Line 5: | Line 5: | ||
* For Pass/Fail grades, the possible outcomes are: <math>\{P, F\}</math> with probabilities <math>\{\tfrac{1}{2}, \tfrac{1}{2}\}</math>. Thus, | * For Pass/Fail grades, the possible outcomes are: <math>\{P, F\}</math> with probabilities <math>\{\tfrac{1}{2}, \tfrac{1}{2}\}</math>. Thus, | ||
− | {{NumBlk|::|<math>H\left(P\right)=\sum_{i=1}^n p_i\cdot \log_2\left(\frac{1}{p_i}\right) = \frac{1}{2}\cdot \log_2\left(2\right) + \frac{1}{2}\cdot \log_2\left(2\right) = 1\,\mathrm{bit}</math>|{{EquationRef| | + | {{NumBlk|::|<math>H\left(P\right)=\sum_{i=1}^n p_i\cdot \log_2\left(\frac{1}{p_i}\right) = \frac{1}{2}\cdot \log_2\left(2\right) + \frac{1}{2}\cdot \log_2\left(2\right) = 1\,\mathrm{bit}</math>|{{EquationRef|1}}}} |
+ | |||
+ | * For grades = <math>\{1.0, 2.0, 3.0, 4.0, 5.0\}</math> with probabilities <math>\{\tfrac{1}{5}, \tfrac{1}{5}, \tfrac{1}{5}, \tfrac{1}{5}, \tfrac{1}{5}\}</math>, we get: | ||
+ | |||
+ | {{NumBlk|::|<math>H\left(P\right)=\sum_{i=1}^n p_i\cdot \log_2\left(\frac{1}{p_i}\right) = 5\cdot \frac{1}{5}\cdot \log_2\left(5\right) = 2.32\,\mathrm{bit}</math>|{{EquationRef|2}}}} |
Revision as of 23:10, 13 September 2020
Let's look at a few applications of the concept of information and entropy.
Student Grading
How much information can we get from a single grade? Note that the maximum information occurs when all the grades have equal probability.
- For Pass/Fail grades, the possible outcomes are: with probabilities . Thus,
-
(1)
-
- For grades = with probabilities , we get:
-
(2)
-