Difference between revisions of "220-A1.2"
Jump to navigation
Jump to search
Line 10: | Line 10: | ||
{{NumBlk|::|<math>v_{out}=\frac{Z_2}{Z_1 + Z_2}\cdot v_{in} = \frac{R_2}{R_1 + R_2}\cdot \frac{1 + s R_1 C_1}{1 + s\frac{R_1 R_2}{R_1 + R_2}\left(C_1 + C_2\right)}\cdot v_{in}=\frac{R_2}{R_1 + R_2}\cdot \frac{1 + \frac{s}{\omega_z}}{1 + \frac{s}{\omega_p}}\cdot v_{in}</math>|{{EquationRef|1}}}} | {{NumBlk|::|<math>v_{out}=\frac{Z_2}{Z_1 + Z_2}\cdot v_{in} = \frac{R_2}{R_1 + R_2}\cdot \frac{1 + s R_1 C_1}{1 + s\frac{R_1 R_2}{R_1 + R_2}\left(C_1 + C_2\right)}\cdot v_{in}=\frac{R_2}{R_1 + R_2}\cdot \frac{1 + \frac{s}{\omega_z}}{1 + \frac{s}{\omega_p}}\cdot v_{in}</math>|{{EquationRef|1}}}} | ||
− | Notice that we can cancel out the pole with the zero when we set <math>\omega_z = \omega_p</math>. | + | Notice that we can cancel out the pole with the zero when we set <math>\omega_z = \omega_p</math>, or equivalently, |
+ | |||
+ | {{NumBlk|::|<math>\frac{C_1}{C_1 + C_2}=\frac{R_2}{R_1 + R_2}</math>|{{EquationRef|2}}}} | ||
+ | |||
+ | Intuitively, we can think if this as a resistive voltage divider at low frequencies, and a capacitive divider with the same ratio at high frequencies. Thus, the output voltage will simply be equal to: | ||
+ | |||
+ | {{NumBlk|::|<math>v_{out}=\frac{R_2}{R_1 + R_2}\cdot v_{in}</math>|{{EquationRef|1}}}} | ||
+ | |||
+ | We can then build a simple 10X oscilloscope probe circuit with an input impedance of <math>1\,\mathrm{M\Omega}</math> and an input capacitance of <math>1\,\mathrm{pF}</math> using <math>R_1 = 900\,\mathrm{k\Omega}</math>, <math>R_2 = 100\,\mathrm{k\Omega}</math>, <math>C_1 = 1.11\,\mathrm{pF}</math>, and <math>C_2 = 10\,\mathrm{pF}</math>. | ||
== A Lossy LC Tank == | == A Lossy LC Tank == | ||
== A Simple Switched-Capacitor Circuit == | == A Simple Switched-Capacitor Circuit == |
Revision as of 10:38, 7 August 2020
- Activity: Simulating simple RLC circuits
- At the end of this activity, the student should be able to:
- Run DC, AC, and transient simulations using ngspice.
A Wideband RC Voltage Divider
One way to build high-speed circuits with relatively large input impedances and capacitances is to use a simple RC voltage divider, as shown in the figure below. This RC divider is commonly found in oscilloscope 10X probes.
Let and similarly . Thus, the output voltage can be expressed as:
-
(1)
-
Notice that we can cancel out the pole with the zero when we set , or equivalently,
-
(2)
-
Intuitively, we can think if this as a resistive voltage divider at low frequencies, and a capacitive divider with the same ratio at high frequencies. Thus, the output voltage will simply be equal to:
-
(1)
-
We can then build a simple 10X oscilloscope probe circuit with an input impedance of and an input capacitance of using , , , and .