Difference between revisions of "220-A1.2"

From Microlab Classes
Jump to navigation Jump to search
Line 10: Line 10:
 
{{NumBlk|::|<math>v_{out}=\frac{Z_2}{Z_1 + Z_2}\cdot v_{in} = \frac{R_2}{R_1 + R_2}\cdot \frac{1 + s R_1 C_1}{1 + s\frac{R_1 R_2}{R_1 + R_2}\left(C_1 + C_2\right)}\cdot v_{in}=\frac{R_2}{R_1 + R_2}\cdot \frac{1 + \frac{s}{\omega_z}}{1 + \frac{s}{\omega_p}}\cdot v_{in}</math>|{{EquationRef|1}}}}
 
{{NumBlk|::|<math>v_{out}=\frac{Z_2}{Z_1 + Z_2}\cdot v_{in} = \frac{R_2}{R_1 + R_2}\cdot \frac{1 + s R_1 C_1}{1 + s\frac{R_1 R_2}{R_1 + R_2}\left(C_1 + C_2\right)}\cdot v_{in}=\frac{R_2}{R_1 + R_2}\cdot \frac{1 + \frac{s}{\omega_z}}{1 + \frac{s}{\omega_p}}\cdot v_{in}</math>|{{EquationRef|1}}}}
  
Notice that we can cancel out the pole with the zero when we set <math>\omega_z = \omega_p</math>.
+
Notice that we can cancel out the pole with the zero when we set <math>\omega_z = \omega_p</math>, or equivalently,
 +
 
 +
{{NumBlk|::|<math>\frac{C_1}{C_1 + C_2}=\frac{R_2}{R_1 + R_2}</math>|{{EquationRef|2}}}}
 +
 
 +
Intuitively, we can think if this as a resistive voltage divider at low frequencies, and a capacitive divider with the same ratio at high frequencies. Thus, the output voltage will simply be equal to:
 +
 
 +
{{NumBlk|::|<math>v_{out}=\frac{R_2}{R_1 + R_2}\cdot v_{in}</math>|{{EquationRef|1}}}}
 +
 
 +
We can then build a simple 10X oscilloscope probe circuit with an input impedance of <math>1\,\mathrm{M\Omega}</math> and an input capacitance of <math>1\,\mathrm{pF}</math> using <math>R_1 = 900\,\mathrm{k\Omega}</math>, <math>R_2 = 100\,\mathrm{k\Omega}</math>, <math>C_1 = 1.11\,\mathrm{pF}</math>, and <math>C_2 = 10\,\mathrm{pF}</math>.
  
 
== A Lossy LC Tank ==
 
== A Lossy LC Tank ==
  
 
== A Simple Switched-Capacitor Circuit ==
 
== A Simple Switched-Capacitor Circuit ==

Revision as of 10:38, 7 August 2020

  • Activity: Simulating simple RLC circuits
  • At the end of this activity, the student should be able to:
  1. Run DC, AC, and transient simulations using ngspice.

A Wideband RC Voltage Divider

One way to build high-speed circuits with relatively large input impedances and capacitances is to use a simple RC voltage divider, as shown in the figure below. This RC divider is commonly found in oscilloscope 10X probes.

Let and similarly . Thus, the output voltage can be expressed as:

 

 

 

 

(1)

Notice that we can cancel out the pole with the zero when we set , or equivalently,

 

 

 

 

(2)

Intuitively, we can think if this as a resistive voltage divider at low frequencies, and a capacitive divider with the same ratio at high frequencies. Thus, the output voltage will simply be equal to:

 

 

 

 

(1)

We can then build a simple 10X oscilloscope probe circuit with an input impedance of and an input capacitance of using , , , and .

A Lossy LC Tank

A Simple Switched-Capacitor Circuit