Difference between revisions of "220-A1.2"
Jump to navigation
Jump to search
Line 8: | Line 8: | ||
Let <math>Z_1 = R_1 \| \frac{1}{s C_1} = \frac{R_1}{1 + s R_1 C_1}</math> and similarly <math>Z_2 = \frac{R_2}{1 + s R_2 C_2}</math>. Thus, the output voltage can be expressed as: | Let <math>Z_1 = R_1 \| \frac{1}{s C_1} = \frac{R_1}{1 + s R_1 C_1}</math> and similarly <math>Z_2 = \frac{R_2}{1 + s R_2 C_2}</math>. Thus, the output voltage can be expressed as: | ||
− | {{NumBlk|::|<math>v_{out}=\frac{Z_2}{Z_1 + Z_2}\cdot v_{in} = \frac{R_2}{R_1 + R_2}\cdot \frac{1 + s R_1 C_1}{1 + s\frac{R_1 R_2}{R_1 + R_2}\left(C_1 + C_2\right)}</math>|{{EquationRef|1}}}} | + | {{NumBlk|::|<math>v_{out}=\frac{Z_2}{Z_1 + Z_2}\cdot v_{in} = \frac{R_2}{R_1 + R_2}\cdot \frac{1 + s R_1 C_1}{1 + s\frac{R_1 R_2}{R_1 + R_2}\left(C_1 + C_2\right)}\cdot v_{in}=\frac{R_2}{R_1 + R_2}\cdot \frac{1 + \frac{s}{\omega_z}}{1 + \frac{s}{\omega_p}}\cdot v_{in}</math>|{{EquationRef|1}}}} |
+ | |||
+ | Notice that we can cancel out the pole with the zero when we set <math>\omega_z = \omega_p</math>. | ||
== A Lossy LC Tank == | == A Lossy LC Tank == | ||
== A Simple Switched-Capacitor Circuit == | == A Simple Switched-Capacitor Circuit == |
Revision as of 10:26, 7 August 2020
- Activity: Simulating simple RLC circuits
- At the end of this activity, the student should be able to:
- Run DC, AC, and transient simulations using ngspice.
A Wideband RC Voltage Divider
One way to build high-speed circuits with relatively large input impedances and capacitances is to use a simple RC voltage divider, as shown in the figure below. This RC divider is commonly found in oscilloscope 10X probes.
Let and similarly . Thus, the output voltage can be expressed as:
-
(1)
-
Notice that we can cancel out the pole with the zero when we set .