Difference between revisions of "Entropy, Relative Entropy, Mutual Information"
Jump to navigation
Jump to search
Line 38: | Line 38: | ||
{{NumBlk|:|<math>E\left[\log_2\left(\tfrac{1}{p\left(x\right)}\right)\right]=\sum_{x\in \mathcal{X}} \log_2\left(\tfrac{1}{p\left(x\right)}\right) \cdot p\left(x\right)=-\sum_{x\in \mathcal{X}} p\left(x\right) \cdot \log_2 p\left(x\right)=H\left(X\right)</math>|{{EquationRef|4}}}} | {{NumBlk|:|<math>E\left[\log_2\left(\tfrac{1}{p\left(x\right)}\right)\right]=\sum_{x\in \mathcal{X}} \log_2\left(\tfrac{1}{p\left(x\right)}\right) \cdot p\left(x\right)=-\sum_{x\in \mathcal{X}} p\left(x\right) \cdot \log_2 p\left(x\right)=H\left(X\right)</math>|{{EquationRef|4}}}} | ||
− | === Lemma 1 === | + | === Lemma 1: Entropy is greater than or equal to zero === |
{{NumBlk|:|<math>H\left(X\right)\ge 0</math>|{{EquationRef|5}}}} | {{NumBlk|:|<math>H\left(X\right)\ge 0</math>|{{EquationRef|5}}}} | ||
'''Proof''': Since <math>0 \le p\left(x\right) \le 1</math>, then <math>\log_2\left(\tfrac{1}{p\left(x\right)}\right) \ge 0</math>, and subsequently, <math>E\left[\log_2\left(\tfrac{1}{p\left(x\right)}\right)\right] \ge 0</math>. Thus from Eq. ({{EquationNote|4}}) we get <math>H\left(X\right)\ge 0</math>. | '''Proof''': Since <math>0 \le p\left(x\right) \le 1</math>, then <math>\log_2\left(\tfrac{1}{p\left(x\right)}\right) \ge 0</math>, and subsequently, <math>E\left[\log_2\left(\tfrac{1}{p\left(x\right)}\right)\right] \ge 0</math>. Thus from Eq. ({{EquationNote|4}}) we get <math>H\left(X\right)\ge 0</math>. | ||
− | === Lemma 2 === | + | === Lemma 2: Changing the logarithm base === |
{{NumBlk|:|<math>H_b\left(X\right)=\left(\log_b a\right)\cdot H_a\left(X\right)</math>|{{EquationRef|6}}}} | {{NumBlk|:|<math>H_b\left(X\right)=\left(\log_b a\right)\cdot H_a\left(X\right)</math>|{{EquationRef|6}}}} | ||
+ | |||
+ | '''Proof''': |
Revision as of 18:10, 25 June 2020
Contents
Definitions
Entropy
- a measure of the uncertainty of a random variable
- The entropy of a random variable is a measure of the uncertainty of the random variable
- it is a measure of the amount of information required on the average to describe the random variable
Relative Entropy
- a measure of the distance between two distributions
- a measure of the inefficiency of assuming that the distribution is when the true distribution is .
Mutual Information
- a measure of the amount of information that one random variable contains about another random variable
Entropy
Definitions:
- a measure of the uncertainty of a random variable
- The entropy of a random variable is a measure of the uncertainty of the random variable
- it is a measure of the amount of information required on the average to describe the random variable
The entropy of a discrete random variable, , is
-
(1)
where has a probability mass function (pmf), , and an alphabet .
Expected Value
For a discrete random variable, , with probability mass function, , the expected value of is
-
(2)
For a discrete random variable, , with probability mass function, , the expected value of is
-
(3)
Consider the case where . We get
-
(4)
Lemma 1: Entropy is greater than or equal to zero
-
(5)
Proof: Since , then , and subsequently, . Thus from Eq. (4) we get .
Lemma 2: Changing the logarithm base
-
(6)
Proof: