CoE/ECE/EE 196

From Microlab Classes
Revision as of 09:29, 6 July 2022 by Ryan Antonio (talk | contribs) (Created page with "== Paper Readings for CoE/ECE/EE 196 == Below is a list of paper readings for possible topics in Microlab. The list mostly consists of general reading and survey papers. Some...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Paper Readings for CoE/ECE/EE 196

Below is a list of paper readings for possible topics in Microlab. The list mostly consists of general reading and survey papers. Some also have lectures or webinars.

General Reading

All students must at least read the general readings. No need to be meticulous in details but at least understand where and how the field of microelectronics is progressing.

  • Cavin, R.K.; Lugli, P.; Zhirnov, V.V.; , “Science and Engineering Beyond Moore’s Law,” Proceedings of the IEEE , vol.100, no. Special Centennial Issue, pp.1720-1749, May 13 2012 (URL)

Low Voltage Circuit Design

  • Dreslinski, R.G.; Wieckowski, M.; Blaauw, D.; Sylvester, D.; Mudge, T.; , “Near-Threshold Computing: Reclaiming Moore’s Law Through Energy Efficient Integrated Circuits,” Proceedings of the IEEE , vol.98, no.2, pp.253-266, Feb. 2010 (URL)
  • Kinget, P.R.; , “Designing analog and RF circuits for ultra-low supply voltages,” Solid State Circuits Conference, 2007. ESSCIRC 2007. 33rd European , vol., no., pp.58-67, 11-13 Sept. 2007 (URL)
  • Kinget, P.; Chatterjee, S.; Tsividis, Y.; , “Ultra-Low Voltage Analog Design Techniques for Nanoscale CMOS Technologies,” Electron Devices and Solid-State Circuits, 2005 IEEE Conference on , vol., no., pp. 9- 14, 19-21 Dec. 2005 (URL)

Digitally Assisted Analog Circuits

  • Murmann, B., “Digitally Assisted Analog Circuits,” Micro, IEEE , vol.26, no.2, pp.38,47, March-April 2006 (URL)
  • Murmann, B., “Digitally assisted data converter design,” ESSCIRC (ESSCIRC), 2013 Proceedings of the , vol., no., pp.24,31, 16-20 Sept. 2013 (URL)
  • Murmann, B., “A/D converter trends: Power dissipation, scaling and digitally assisted architectures,” Custom Integrated Circuits Conference, 2008. CICC 2008. IEEE , vol., no., pp.105,112, 21-24 Sept. 2008 (URL)

Spintronics

  • Dieny, B., Prejbeanu, I.L., Garello, K.; et al.; , “Opportunities and challenges for spintronics in the microelectronics industry,” Nat Electron 3, 446–459 (2020) (URL 1, URL 2)
  • Bhatti, S.; Sbiaa, R.; Hirohata, A.; et al.; , “Spintronics based random access memory: a review,” Materials Today, vol. 20, no. 9, pp. 530-548, Nov. 2017 (URL)
  • Jain, S.; Sapatnekar, S.; Wang, J.; Roy, K.; Raghunathan, A.; , “Computing-in-memory with spintronics,” 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, 2018, pp. 1640-1645, Mar. 2018. (URL 1, URL 2)
  • Grollier, J.; Querlioz, D.; Stiles, M.D. ; , “Spintronic Nanodevices for Bioinspired Computing,” Proceedings of the IEEE, vol. 104, no. 10, pp. 2024-2039, Oct. 2016 (URL 1, URL 2)
    • TEDx Talk by Grollier, J. (2018, Jan 25). How artificial nano-neurons can fix computers’ energy addiction? | Julie Grollier | TEDxSaclay. TEDx Talks.
  • Seminar by Stiles, M. D. (2020, Aug 12). Using magnetic tunnel junctions to compute like the brain. Online SPICE-SPIN+X Seminars.

Wireless Sensor Networks

  • Chen, G.; Hanson, S.; Blaauw, D.; Sylvester, D.; , “Circuit Design Advances for Wireless Sensing Applications,” Proceedings of the IEEE , vol.98, no.11, pp.1808-1827, Nov. 2010 (URL)
  • M. A. Alsheikh, S. Lin, D. Niyato and H. Tan, “Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications,” in IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1996-2018, Fourthquarter 2014, doi: 10.1109/COMST.2014.2320099. (URL)