Difference between revisions of "CoE 163 S2 AY 2020-2021"

From Microlab Classes
Jump to navigation Jump to search
m
m
Line 55: Line 55:
 
||
 
||
 
[SQ02] Asymptotic analysis<br>
 
[SQ02] Asymptotic analysis<br>
[https://uvle.upd.edu.ph/mod/quiz/view.php?id=450833 <nowiki>[SQ02] Submission bin</nowiki>]
+
[https://uvle.upd.edu.ph/mod/quiz/view.php?id=450833 <nowiki>[SQ02] Submission bin</nowiki>]<br>
 +
[https://uvle.upd.edu.ph/mod/quiz/view.php?id=457669 <nowiki>[SQ02] Submission bin (late)</nowiki>]
 
||
 
||
 
[[:File:Coe163 2020s2 02a review asymptotic.pdf | [02a slides]]]<br>
 
[[:File:Coe163 2020s2 02a review asymptotic.pdf | [02a slides]]]<br>
Line 92: Line 93:
 
* [05c] Matrix-matrix multiplication part 02
 
* [05c] Matrix-matrix multiplication part 02
 
||
 
||
 +
[SQ03] Caching in MMM<br>
 +
[https://uvle.upd.edu.ph/mod/quiz/view.php?id=467803 <nowiki>[SQ03] Submission bin</nowiki>]<br>
 +
[https://uvle.upd.edu.ph/mod/quiz/view.php?id=478761 <nowiki>[SQ03] Submission bin (late)</nowiki>]<br><br>
 +
 +
[ME02] MMM Loop Ordering<br>
 +
[https://uvle.upd.edu.ph/mod/assign/view.php?id=473279 <nowiki>[ME02] Submission bin</nowiki>]<br>
 +
[https://colab.research.google.com/drive/1tj7VoRqeZ9TuhO3Cl2A0OEnwGKqy9_xW <nowiki>[ME02] Jupyter notebook</nowiki>]
 
||
 
||
 
[[:File:Coe163 2020s2 05a cache.pdf | [05a slides]]]<br>
 
[[:File:Coe163 2020s2 05a cache.pdf | [05a slides]]]<br>
Line 103: Line 111:
 
* Matrix inversion
 
* Matrix inversion
 
||
 
||
* Machine exercise
+
[ME03] BLAS<br>
 +
[https://uvle.upd.edu.ph/mod/assign/view.php?id=473330 <nowiki>[ME03] Submission bin</nowiki>]<br>
 +
[https://colab.research.google.com/drive/1wOzAnnel_qm2z8_LUO1ijSSSw7yWdWMA <nowiki>[ME03] Jupyter notebook</nowiki>]
 
||
 
||
 
|-
 
|-
Line 111: Line 121:
 
* Matrix decomposition
 
* Matrix decomposition
 
||
 
||
* Machine exercise
+
[SQ04] Matrix Factorization and Sparse Matrices<br>
 +
[https://uvle.upd.edu.ph/mod/quiz/view.php?id=478785 <nowiki>[SQ03] Submission bin</nowiki>]<br>
 
||
 
||
 
|-
 
|-
Line 147: Line 158:
 
||
 
||
 
||
 
||
* Capstone exercise
+
[CE] Parallel Programming with CUDA<br>
 +
[https://uvle.upd.edu.ph/mod/assign/view.php?id=480128 <nowiki>[CE] Submission bin</nowiki>]<br>
 +
[https://colab.research.google.com/drive/1jjzPTP0QAMLcmiIGJFY_dXxdaGozkHvx <nowiki>[CE] Jupyter notebook</nowiki>]<br>
 
||
 
||
 
|}
 
|}
  
 
= Grading Rubric =
 
= Grading Rubric =
40% Short quizzes<br>
+
<s>40% Short quizzes</s><br>
35% Machine exercises<br>
+
<s>35% Machine exercises</s><br>
25% Capstone exercise
+
<s>25% Capstone exercise</s><br>
 +
55% Short quizzes<br>
 +
45% Machine exercises<br>
 +
10% Capstone exercies

Revision as of 01:58, 25 June 2021

Course Information

Academic Period: 2nd Semester AY 2020-2021
Units: 3
Workload:

  • 3 hours lecture per week
  • 1-2 hours exercise per week

Instructors:

  • Carl C. Dizon [carl.dizon at eeemail]
  • Isabel M. Austria [isabel.austria at eeemail]
  • Nestor Michael C. Tiglao [nestor at eeemail]

Synopsis: This course aims to 1) present the connection between algorithms, implementation, and computer architecture, 2) provide tools needed to write and apply fast numerical code, and 3) present representative fundamental numerical algorithms.
Delivery Method: Video lectures and digital materials
Online Platforms: UVLe, Piazza, edX, Google Meet, Zoom, other quiz platforms.

Course Outline

Week Topics Academic Requirements Resource Links
0
  • [00] Course overview and synopsis
  • [00] Course requirements

[syllabus]
[00 slides]

1
  • [01a] Review of CS data structures and algorithms
  • [01b] Problem identification and solving

[SQ01] CS problems
[SQ01] Submission bin
[SQ01] Submission bin (late)

[01a slides]
[01b slides]

2
  • [02a] Review of asymptotic analysis
  • [02b] Amortized analysis
  • [02c] Platform-dependent programming

[SQ02] Asymptotic analysis
[SQ02] Submission bin
[SQ02] Submission bin (late)

[02a slides]
[02b slides]
[02c slides]

3
  • [03a] High-level code translation to memory
  • [03b] Introduction to parallel programming
  • [03c] Introduction to x86 assembly

[ME01] Solving and profiling
[ME01] Specifications
[ME01] Submission bin

[03a slides]
[03b slides]
[03c slides]

4
  • [04a] Review of linear algebra operations
  • [04b] Solving problems using linear algebra
  • [04c] Considerations on formulating linear algebra algorithms

[04a slides]
[04b slides]
[04c slides]

5
  • [05a] Cache review
  • [05b] Matrix-matrix multiplication part 01
  • [05c] Matrix-matrix multiplication part 02

[SQ03] Caching in MMM
[SQ03] Submission bin
[SQ03] Submission bin (late)

[ME02] MMM Loop Ordering
[ME02] Submission bin
[ME02] Jupyter notebook

[05a slides]
[05b slides]
[05c slides]
[05c guide]

6
  • Gaussian elimination
  • Matrix inversion

[ME03] BLAS
[ME03] Submission bin
[ME03] Jupyter notebook

7
  • Sparse linear algebra
  • Matrix decomposition

[SQ04] Matrix Factorization and Sparse Matrices
[SQ03] Submission bin

8
  • Parallel computing concepts
  • Limits of parallel computing
  • Short quiz
9
  • Single instruction multiple data vectorization
  • OpenCL/OpenMP
  • Machine exercise
10
  • GPU programming introduction
  • Machine exercise
11
  • Parallel computing algorithms
  • Short quiz
12

[CE] Parallel Programming with CUDA
[CE] Submission bin
[CE] Jupyter notebook

Grading Rubric

40% Short quizzes
35% Machine exercises
25% Capstone exercise
55% Short quizzes
45% Machine exercises
10% Capstone exercies