
CoE 163

Computing Architectures and Algorithms

00: About the Course

HELLO!

Welcome to the world course where algorithms and hardware connect with each other!

ICE BREAKING SESSION!

Check the polls!

WHAT YOU ALREADY KNOW...

- Math 40
 - Linear algebra
 - Matrix operations
- EEE 121
 - Basic programming
 - Data structures and algorithms
- EEE 153
 - Computer organization
 - Memory, cache, etc.

WHAT ARE GOOD TO KNOW...

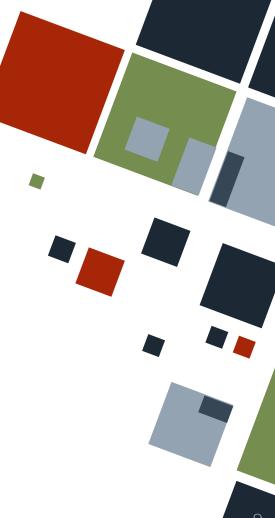
- Knowledge of several programming languages
 - C/C++
 - Python
 - Matlab/Octave
 - Assembly (MIPS)
- Signals and systems
 - Convolution
 - Filters and transforms

WHAT YOU'LL LEARN...

- How are hardware and algorithms related to each other?
- How do we implement algorithms with efficiency in mind?
 - Problem-solving paradigms
 - Platform-dependent programming
 - Parallel computing

COURSE SEGMENTS

- Introduction
- Efficient linear algebra operations
- Architectural features of computing systems



INTRODUCTION

- How to solve "any" problem?
 - Problem-solving paradigms
- How to assess algorithm efficiency?
 - Asymptotic analysis
- How to choose an appropriate platform for my project(s)?
 - Platform-dependent coding
- How do I exploit hardware to make my project more efficient?
 - High-level to low-level implementations
 - Parallel programming (intro)

EFFICIENT LINEAR ALGEBRA OPS

- Code caching behavior
- Linear algebra libraries (ATLAS)
- Matrix operations
 - RREF
 - Decomposition (SVD, LU)
 - ° ...
- Sparse matrix operations

ARCH FEATURES OF COMP SYS

- Computer architecture types
- Parallel programming
- Other misc algorithms
 - Fourier transforms
 - Filtering
 - Sorting
 - Convolution

SURPRISE REVIEW QUIZ!

Check the polls!

CLASS ARRANGEMENT

CoE 163 is partially asynchronous, meaning you will take this course at your own **pace** with materials provided to you. No synchronous meetings, unless informed in advance. Any exercises and online quizzes will have **deadlines** (usually a week after release).

LEARNING TOOLS

- Decent internet connection
 - Video lecture watching
 - Exercise submission
- Access to a desktop, laptop, or smartphone
 - Programming exercises
 - Capstone exercise
 - Will try our best to either:
 - Make exercises solvable on slow computers
 - Lend a remote server (VPS) or platform for your programs
- Better to have a camera and microphone for synchronous meetings, if any

CLASS MATERIALS

- Video lectures
- Slides used in video lectures
- Resource/reading links
- Forums
 - UVLe
 - Piazza

CLASS REQUIREMENTS

- Academic output
 - Short quizzes
 - Machine exercises
 - Machine problem/capstone exercise
 - **NO** exams
- Grading rubric, late submissions, the specific stuff...
 - \circ \ldots to follow. ;(

INSTRUCTOR INFORMATION

Carl C. Dizon

Lecturer ME Electrical Engineering

carl [dot] dizon [at] eeemail

... or forums via UVLe (or Piazza)!

OTHER INSTRUCTORS

CoE 163 is co-taught with two other instructors from CNL/UCL:

- Isabel A. Montes
- Nestor Michael C. Tiglao

OPEN FORUM

Enjoy and good luck with the course!

CoE 163

Computing Architectures and Algorithms

00: About the Course