
CoE 164
Computing Platforms

03c: Lifetimes

2

REFERENCES

A reference to a data enables
lending of such data. When a
reference is "passed" to a function or
any variable, the function does not
own the data.

During the course of the program,
references should point to valid data.

Example

3

If the reference points to data that
will become out of scope soon, it is
called a dangling reference. Rust
implements a borrow checker to
ensure that such references will
never happen.

REFERENCES: DANGLES

fn main() {
 let outer;

 {
 let inner = 5;
 outer = &inner;
 }

 println!("outer: {outer}");
}

4

REFERENCES: DANGLES

fn main() {
 let outer;

 {
 let inner = 5;
 outer = &inner;
 }

 println!("outer: {outer}");
}

Example

Valid References

P
ro

gr
am

 c
ou

nt
er

5

REFERENCES: DANGLES

outer

Valid References

P
ro

gr
am

 c
ou

nt
er

fn main() {
 let outer;

 {
 let inner = 5;
 outer = &inner;
 }

 println!("outer: {outer}");
}

Example

6

REFERENCES: DANGLES

outer

Valid References

P
ro

gr
am

 c
ou

nt
er

fn main() {
 let outer;

 {
 let inner = 5;
 outer = &inner;
 }

 println!("outer: {outer}");
}

Example

7

REFERENCES: DANGLES

Valid References

P
ro

gr
am

 c
ou

nt
er

fn main() {
 let outer;

 {
 let inner = 5;
 outer = &inner;
 }

 println!("outer: {outer}");
}

Example

8

REFERENCES: DANGLES

Valid References

P
ro

gr
am

 c
ou

nt
er

"inner" does
not exist!

fn main() {
 let outer;

 {
 let inner = 5;
 outer = &inner;
 }

 println!("outer: {outer}");
}

Example

9

REFERENCES:
LIFETIMES
Rust tracks the lifetime of references
to make sure that each of them
points to valid data at any point in the
program where they are used.

The lifetime is related to the scope
where the reference and the data it
points to is available.

10

REFERENCES: LIFETIMES

The inner variable
has a smaller
lifetime than the
outer variable.

fn main() {
 let outer;

 {
 let inner = 5;
 outer = &inner;
 }

 println!("outer: {outer}");
}

Example

11

REFERENCES: LIFETIMES

'b: inner: i64

'a: outer: &i64

fn main() {
 let outer;

 {
 let inner = 5;
 outer = &inner;
 }

 println!("outer: {outer}");
}

Example

12

REFERENCES: LIFETIMES

'b: inner: i64

'a: outer: &i64

fn main() {
 let outer;

 {
 let inner = 5;
 outer = &inner;
 }

 println!("outer: {outer}");
}

Example

"outer" and
"inner" have

different
scopes!

13

REFERENCES: LIFETIMES

fn main() {
 let outer;
 let inner = 5;
 outer = &inner;

 println!("outer: {outer}");
}

Example

The outer and
inner variables
now have
overlapping scopes.

14

REFERENCES: LIFETIMES

fn main() {
 let outer;
 let inner = 5;
 outer = &inner;

 println!("outer: {outer}");
}

Example

'b: inner: i64

'a: outer: &i64

Example

15

Rust usually is able to determine
the lifetimes of each reference in a
program. However, there are cases
when lifetimes of multiple
references used in functions are
ambiguous.

REFERENCES: FUNCTION LIFETIMES

fn longest(x: &str, y: &str) ->
&str {
 if x.len() > y.len() {
 x
 } else {
 y
 }
}

Example

16

REFERENCES: FUNCTION LIFETIMES

fn longest(x: &str, y: &str) ->
&str {
 if x.len() > y.len() {
 x
 } else {
 y
 }
}

Is the return value
lifetime the same as x

or y?

If this is true, then the
lifetime is that of x.

Otherwise, then the
lifetime is that of y.

Example

17

Rust supports lifetime
annotations, which are generic
"data types" placed as part of the
generic data type list in functions.

Lifetime annotations are named
using lowercase letters and are
prefixed by an apostrophe. These
are placed immediately after the
ampersand.

LIFETIME ANNOTATIONS

// &str
// &'a str
// &'a mut str

fn longest <'a>(x: &'a str, y:
&'a str) -> &'a str {
 if x.len() > y.len() {
 x
 } else {
 y
 }
}

Example

18

LIFETIME ANNOTATIONS

Lifetime annotations inform the
compiler that certain parameters
and return values in a function will
have the same or different lifetimes.

For example, parameters and return
values annotated with the same
lifetime will have the same lifetime,
and hence, should be valid
throughout the whole function.

// &str
// &'a str
// &'a mut str

fn longest <'a>(x: &'a str, y:
&'a str) -> &'a str {
 if x.len() > y.len() {
 x
 } else {
 y
 }
}

Example

19

LIFETIME ANNOTATIONS

fn longest <'a>(x: &'a str, y:
&'a str) -> &'a str {
 if x.len() > y.len() {
 x
 } else {
 y
 }
}

x, y, and the return
value are all

annotated to have the
same lifetime!

20

LIFETIME ELISION
RULES
Technically, all parameters and return
values in functions should be
explicitly annotated with lifetimes.
However, the compiler follows
empirically-derived rules to be able to
automatically infer lifetimes.

If the compiler is able to infer the
lifetimes of all of the parameters and
return values, then there is no need
to explicitly annotate them.

21

LIFETIME ELISION
RULES
Rust follows some basic rules regarding
automatic annotation of lifetimes in
functions and methods.

1. Each reference parameter is
assigned separate lifetimes.

2. If there is only one reference input,
the return value will have the same
lifetime as it.

3. If it is a method, the return value
will have the same lifetime as
self.

22

LIFETIME ELISION

fn first_word(s: &str) -> &str

Rule 1:
Label with new

lifetime 'a

23

LIFETIME ELISION

fn first_word(s: &'a str) -> &str

Rule 2:
Function with single

parameter - label with
lifetime 'a

24

LIFETIME ELISION

fn first_word(s: &'a str) -> &'a str

All references have resolved lifetimes, so no
explicit annotation is needed!

fn longest(x: &str, y: &str) -> &str

25

LIFETIME ELISION

Rule 1:
Label with new

lifetime 'a

26

LIFETIME ELISION

fn longest(x: &'a str, y: &str) -> &str

Rule 1:
Label with new

lifetime 'b

27

LIFETIME ELISION

All references do not have resolved
lifetimes, so explicit annotation is needed!

fn longest(x: &'a str, y: &'b str) -> &str

Example

28

If structs contain a reference as one
of its fields, those fields require
lifetime annotations.

Since lifetime annotations are
"generic types", it should also be
declared in the generic type list.

LIFETIME ANNOTATIONS: STRUCTS

struct UserAcct <'a> {
 active: bool,
 alias: &'a String,
 username: String,
 sign_in_count: u64,
}

Exam
ple

29

If a method is to be written for a struct or enum that contains a lifetime
annotation, the impl block should also have that lifetime annotation.
Lifetime elision rules still apply.

LIFETIME ANNOTATIONS: METHODS

impl <'a> UserAcct <'a> {
 fn get_alias(&self) -> &String {
 self.alias
 }
}

Exam
ple

30

A data can be made to live for the entire duration of the program by
making it static. The data can be annotated using the special 'static
keyword.

This annotation should be sparingly used since it skirts the lifetime checks
and memory optimizations of Rust.

LIFETIME ANNOTATIONS: STATIC

// A str has an implied 'static lifetime
let s: &'static str prog_name = "Rust";

31

RESOURCES

◦ The Rust Book

https://doc.rust-lang.org/stable/book

CoE 164
Computing Platforms

03c: Lifetimes

