
CoE 164
Computing Platforms

Assessments Week 01
Academic Period: 2nd Semester AY 2023-2024
Workload: 3 hours
Synopsis: Rust programming basics

SE Week 01A
This assessment will probably be your first program in Rust.

This is worth 40% of your grade for this week

Problem Statement
Welcome to EEE! Enjoy your stay.

Your first foray into EEEI includes circuit analysis. It is
essential to simplify a resistor network to determine
the total current supplied by a source. When resistors
are connected in series, the total resistance of the
network is simply their sum. On the other hand, when
resistors are connected in parallel, the total resistance
of the network is the reciprocal sum of the sum of
reciprocals of each resistor.

Your task is to determine the total resistance of a bag of resistors you have found in one of
the laboratories if 1) they are all connected in series, and 2) they are all connected in
parallel. Since the resistor values can be quite "ugly", you have decided to write a simple
program that will compute the equivalent resistance.

Input
The first line of the input consists of a number indicating the number of resistor values𝑁
that will follow. The next lines contain , the resistor value of the th resistor in the𝑁 𝑅

𝑛
𝑛

network.

Output

CoE 164 2s2324 W01 SE | Page 1 of 10

The output should consist of two lines indicating the series and then the parallel equivalent
value of the resistor network separated by a new line respectively. These values should be
rounded down to 4 decimal places.

Constraints
Input Constraints
𝑁 ≤ 5

𝑅
𝑛

∈ 𝑅+

0 < 𝑅
𝑛

≤ 10000

You can assume that all of the inputs are well-formed and are always provided within these
constraints. You are not required to handle any errors.

Functional Constraints
None

Sample Input/Output

Sample Input 1:
3
10
100
1000

Sample Output 1:
1110.0000
9.0090

Sample Input 2:
4
100
100
100
100

Sample Output 2:
400.0000
25.0000

Steps
1. Write your program in Rust. Compile and make sure that there are no syntax errors.
2. Make sure to accept input via standard input and print your output via standard

output. For example, you can write your inputs into a text file named in_pub.txt
and the expected and correct outputs into another text file named
out_pub_ans.txt. If the compiled program is named wa, and you want the

CoE 164 2s2324 W01 SE | Page 2 of 10

printed output to be saved into a file named out_pub.txt, you can execute the
following command from the following terminals to run it:

Windows (Powershell): cat in_pub.txt | ./wa.exe | Out-File
out_pub.txt

Linux/macOS (bash, zsh): ./wa < in_pub.txt > out_pub.txt

Then, compare the program output with the reference output by executing the
following commands:

Windows (Powershell): Compare-Object (gc out_pub.txt) (gc
out_pub_ans.txt)

Linux/macOS (bash, zsh): diff out_pub.txt out_pub_ans.txt

3. Submit a copy of the source code to the Week 01A submission bin. Make sure that
you attach one (1) file in the bin containing the Rust source code with a .rs
extension (preferably named w01a.rs). Please do not send compressed files!

CoE 164 2s2324 W01 SE | Page 3 of 10

https://uvle.upd.edu.ph/mod/assign/view.php?id=594526

SE Week 01B

This assessment will help you be familiar with math operations, loops, and conditionals in
Rust.

This is worth 30% of your grade for this week.

Problem Statement
Hi, it’s me, I’m the problem, it's me.

Taylor is curious on how calculators
compute transcendental functions. She
learned in EEE 143 that multiplication and
division are done through a mix of
repetitive addition and subtraction. She
opened her digital calculator and found
out that, indeed, the calculator computes
using only addition and subtraction
operations.

Looking back on her songs, she played her favorite song 22… wait, that’s also her favorite
subject: Math 22! She remembered the concept of the use of Taylor polynomials to
approximate the value of a function centered at some point . However, the Taylor
polynomial is only accurate to a certain extent. As reference, the Taylor series of a function

is given by:𝑓(𝑥)

𝑓(𝑥) =
𝑛=0

∞

∑ 𝑓(𝑛)𝑎
𝑛! (𝑥 − 𝑎)𝑛

To keep things simple, we set and limit ourselves in computing three transcendental
functions: the natural exponent, sine, and cosine. The equivalent Taylor series expansion of
each transcendental function given the input is shown in the table below.𝑥

Function 𝑓(𝑥) Taylor Series Expansion

CoE 164 2s2324 W01 SE | Page 4 of 10

https://www.codecogs.com/eqnedit.php?latex=a#0
https://www.codecogs.com/eqnedit.php?latex=a%20%3D%200#0
https://www.codecogs.com/eqnedit.php?latex=e%5E%7Bx%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Csum_%7Bn%20%3D%200%7D%5E%7B%2B%5Cinfty%7D%20%5Cfrac%7Bx%5E%7Bn%7D%7D%7Bn!%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Csin(x)#0
https://www.codecogs.com/eqnedit.php?latex=%5Csum_%7Bn%20%3D%200%7D%5E%7B%2B%5Cinfty%7D%20%5Cfrac%7B(-1)%5E%7Bn%7D%7D%7B(2n%2B1)!%7D%5C%2Cx%5E%7B2n%2B1%7D#0

Note that the series is infinite, but we only have a limited amount of time and patience to
compute the approximation. Hence, for all of the above functions, we are going to sum only

the first terms such that is the floored minimum value for which .𝑛 𝑛
is the approximation error and keep for it to be applicable.

Input
The input contains the number of functions to be evaluated, . Followed by the
transcendental function to be evaluated, that is: e for the natural exponential function, s for
the sine function, and c for the cosine function. Then the approximation error that𝑅

𝑑𝑒𝑠𝑖𝑟𝑒𝑑

we want, and finally the input to the function .𝑥

Output
The output consists of lines, with each line denoting the corresponding test case in the
input. Each line should follow the format: Function #T: <result>, where T is the
serial of the test case starting from 1, and <result> indicates the value of the function
rounded down to 2 decimal places.

Constraints
such that

such that

You can assume that all of the inputs are well-formed and are always provided within these
constraints. You are not required to handle any errors.

Sample Input/Output

Sample Input 1:
6
e 0.0001 1
s 0.0001 1
c 0.0001 1
e 0.001 0.5
s 0.001 0.5
c 0.001 0.5

Sample Output 1:
Function #1: 2.72

CoE 164 2s2324 W01 SE | Page 5 of 10

https://www.codecogs.com/eqnedit.php?latex=%5Ccos(x)#0
https://www.codecogs.com/eqnedit.php?latex=%5Csum_%7Bn%3D0%7D%5E%7B%2B%5Cinfty%7D%20%5Cfrac%7B(-1)%5E%7Bn%7D%7D%7B(2n)!%7D%5C%2Cx%5E%7B2n%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7Bx%5E%7Bn%7D%7D%7Bn!%7D%20%5Cleq%20R_%7Bdesired%7D#0
https://www.codecogs.com/eqnedit.php?latex=R_%7Bdesired%7D#0
https://www.codecogs.com/eqnedit.php?latex=0%20%5Cleq%20x%20%5Cleq%201#0
https://www.codecogs.com/eqnedit.php?latex=T#0
https://www.codecogs.com/eqnedit.php?latex=T#0
https://www.codecogs.com/eqnedit.php?latex=0%20%5Cleq%20T#0
https://www.codecogs.com/eqnedit.php?latex=T%20%5Cin%20%5Cmathbb%7BZ%7D%5E%7B%2B%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7Bfunction%7D%20%5Cin%20%5C%7B%5Ctext%7Be%7D%2C%20%5Ctext%7Bs%7D%2C%20%5Ctext%7Bc%7D%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=0.0001%20%5Cleq%20R_%7Bdesired%7D%20%5Cleq%200.001#0
https://www.codecogs.com/eqnedit.php?latex=0%20%3C%20n%20%3C%2021#0
https://www.codecogs.com/eqnedit.php?latex=0%20%5Cleq%20x%20%5Cleq%201#0

Function #2: 0.84
Function #3: 0.54
Function #4: 1.65
Function #5: 0.48
Function #6: 0.88

Steps
1. Write your program in Rust. Compile and make sure that there are no syntax errors.
2. Make sure to accept input via standard input and print your output via standard

output. For example, you can write your inputs into a text file named in_pub.txt
and the expected and correct outputs into another text file named
out_pub_ans.txt. If the compiled program is named wa, and you want the
printed output to be saved into a file named out_pub.txt, you can execute the
following command from the following terminals to run it:

Windows (Powershell): cat in_pub.txt | ./wa.exe | Out-File
out_pub.txt

Linux/macOS (bash, zsh): ./wa < in_pub.txt > out_pub.txt

Then, compare the program output with the reference output by executing the
following commands:

Windows (Powershell): Compare-Object (gc out_pub.txt) (gc
out_pub_ans.txt)

Linux/macOS (bash, zsh): diff out_pub.txt out_pub_ans.txt

3. Submit a copy of the source code to the Week 01B submission bin. Make sure that
you attach one (1) file in the bin containing the Rust source code with a .rs
extension (preferably named w01b.rs). Please do not send compressed files!

CoE 164 2s2324 W01 SE | Page 6 of 10

https://uvle.upd.edu.ph/mod/assign/view.php?id=613085

SE Week 01C
This assessment will help you be familiar with arrays and conditionals in Rust.

This is worth 30% of your grade for this week

Problem Statement
The Philippines encodes mobile phone numbers as an
eleven-digit (11) number. When dialed locally, a number
starts with the digit 0, and then a three-digit prefix that
indicates which mobile network provider the number
originated from, and then finally a seven-digit unique
identifier. The figure below shows a visualization of a
mobile phone number.

Due to the tendency of the Filipino to be "terminally" online, there is an average of one
mobile number per person in the country, and a single prefix for each of the dominant three
network providers as of this time of writing cannot accommodate such number of
subscribers. In addition, due to a changing business landscape, some old network
providers have been absorbed by larger ones. Hence, a service provider usually "owns"
multiple prefixes. Finally, to complicate matters, some network providers share a prefix. The
first digit in the unique identifier is then used to disambiguate between those providers.

The following lists the dominant network providers and their corresponding prefixes. Note
that these prefixes have their initial 0 digit at the leftmost omitted and that four-digit prefixes
include the first digit of the unique id as its last digit.

● Globe/TM: 817, 905, 906, 915, 916, 917, 926, 927, 935, 936, 937, 945, 953, 954,
955, 956, 965, 966, 967, 975, 976, 977, 978, 979, 995, 996, 997, 9173, 9175, 9176,
9178, 9253, 9255, 9256, 9257, 9258

● Smart/Sun/TNT: 922, 923, 924, 925, 931, 932, 933, 934, 940, 941, 942, 943, 973,
974, 907, 909, 910, 912, 930, 938, 946, 948, 950, 908, 918, 919, 920, 921, 928, 929,
939, 946, 947, 949, 951, 961, 998, 999

● DITO: 895, 896, 897, 898, 991, 992, 993, 994

Your task is to create a program for a phonebook app that will output the network provider
where the mobile number is first acquired. Since the app can include international numbers,
the mobile number is to be displayed such that the starting 0 digit is replaced with the

CoE 164 2s2324 W01 SE | Page 7 of 10

country code +63. Then, the prefix, the first three (3) digits of the unique id, and the last
four (4) digits of the unique id are separated by a single space.

Input
The input starts with a number on a single line denoting the number of mobile numbers.𝑇 𝑇
lines then follow, with each line denoting a eleven-digit (11) mobile phone number written𝑀
as a nonnegative integer.

Output
The output consists of lines, with each line denoting the corresponding mobile number in𝑇
the input. Each line should start with the text where is the serial of the test case𝐶𝑎𝑠𝑒 #𝑡: 𝑡
starting from 1. The text after the colon should either be one of the following:

● Invalid

○ The corresponding mobile number does not have a valid prefix
● <network> | +63 <prefix> <uid_left> <uid_right>

○ The corresponding mobile number has a valid prefix
○ <network> should only be from one of the following values

■ Globe/TM
■ Smart/Sun/TNT
■ DITO

○ <prefix> should have exactly three (3) digits
○ <uid_left> should have exactly three (3) digits
○ <uid_right> should have exactly four (4) digits

Constraints
Input Constraints
𝑇 ≤ 100
|𝑀| = 11
𝑀[0] = 0

You can assume that all of the inputs are well-formed and are always provided within these
constraints. You are not required to handle any errors.

Functional Constraints
You are required to have the following function signatures, their arguments in order, and
their return values:

● get_network_from_prefix() - return a number representing which network
provides numbers with the given prefix

○ Arguments
■ prefix - u64 representing the first four (4) digits of a mobile number
■ last_digit - u64 representing the first digit after the prefix

CoE 164 2s2324 W01 SE | Page 8 of 10

○ Return value - u64 representing which network provides numbers with the
given prefix; it can only be from one of the following values:

■ 0 - Invalid prefix
■ 1 - Globe/TM
■ 2 - Smart/Sun/TNT
■ 3 - DITO

● main() - entry point to the program
○ Arguments

■ None
○ Return value

■ None
○ Additional constraints

■ Input and output parsing should be done here

Failure to follow these functional constraints will mark your code with a score of zero.

Sample Input/Output

Sample Input 1:
2
09168756982
07852165966

Sample Output 1:
Case #1: Globe/TM | +63 916 875 6982
Case #2: Invalid

Sample Input 2:
4
09161234567
09087654321
08982536587
07809999999

Sample Output 2:
Case #1: Globe/TM | +63 916 123 4567
Case #2: Smart/Sun/TNT | +63 908 765 4321
Case #3: DITO | +63 898 253 6587
Case #4: Invalid

Sample Input 3:
2
09251523558
09253523558

CoE 164 2s2324 W01 SE | Page 9 of 10

Sample Output 3:
Case #1: Smart/Sun/TNT | +63 925 152 3558
Case #2: Globe/TM | +63 925 352 3558

Steps
1. Write your program in Rust. Compile and make sure that there are no syntax errors.
2. Make sure to accept input via standard input and print your output via standard

output. For example, you can write your inputs into a text file named in_pub.txt
and the expected and correct outputs into another text file named
out_pub_ans.txt. If the compiled program is named wa, and you want the
printed output to be saved into a file named out_pub.txt, you can execute the
following command from the following terminals to run it:

Windows (Powershell): cat in_pub.txt | ./wa.exe | Out-File
out_pub.txt

Linux/macOS (bash, zsh): ./wa < in_pub.txt > out_pub.txt

Then, compare the program output with the reference output by executing the
following commands:

Windows (Powershell): Compare-Object (gc out_pub.txt) (gc
out_pub_ans.txt)

Linux/macOS (bash, zsh): diff out_pub.txt out_pub_ans.txt

3. Submit a copy of the source code to the Week 01C submission bin. Make sure that
you attach one (1) file in the bin containing the Rust source code with a .rs
extension (preferably named w01c.rs). Please do not send compressed files!

CoE 164 2s2324 W01 SE | Page 10 of 10

https://uvle.upd.edu.ph/mod/assign/view.php?id=613086

