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MAXIMIZING 
ALGORITHMS

2

When formulating algorithms, 
“efficiency” and “maximization” 
are the next important things 
after “correctness”

◦ Time (set-up, run, save)
◦ space (memory, storage)



TIME EFFICIENCY
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We can measure runtime of an 
algorithm in terms of ”basic 
computer steps”

◦ Each computer is different
◦ Platform-independent 

measure
◦ Expressed as a function of 

the size of the input n



CONSIDER...
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You are playing Tong-its and 
have a starting hand of 12 cards 
that you would like to sort by 
value.



SORTING BY HAND
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Consider a usual method where 
people scan all their cards, get 
the leftmost unsorted card, and 
insert it in the appropriate place 
on the sorted list.

Do this repetitively while tracking 
the boundary of the sorted and 
unsorted cards.
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SOLVING THE 
PROBLEM
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◦ How do we solve this problem 
as humans?

◦ How do we translate our 
solution into computer code?

◦ How do we decompose this 
problem if it is too big?

◦ How do we make it fast enough 
for our purposes?



PROBLEM 
DECOMPOSITION
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◦ Save the 12 cards in an array
◦ Implicitly divide the array into 

two parts - sorted and unsorted
◦ When a lowest-valued element 

is picked from the unsorted set, 
put it at the end of the sorted 
set by swapping adjacent 
elements
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PYTHON CODE
import random

hand_cards = [random.randint(1, 13) for x in range(12)]

# Unsorted hand_cards
print(hand_cards)

for i in range(len(hand_cards)):
j = i
while j > 0 and hand_cards[j] < hand_cards[j - 1]:

    hand_cards[j], hand_cards[j - 1] = \
    hand_cards[j - 1], hand_cards[j]

    j = j - 1

# Sorted hand_cards
print(hand_cards)



ALGORITHM 
RUNTIME
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How do we measure the runtime of 
this algorithm in terms of “basic 
computer steps”?

◦ Assume certain operations cost 
one step

◦ Think in terms of data input size 
n

◦ Loop counting and guessing of 
loop invariants are key skills
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ALGORITHM RUNTIME
import random

hand_cards = [random.randint(1, 13) for x in range(12)]

# Unsorted hand_cards
print(hand_cards)

for i in range(len(hand_cards)):
j = i
while j > 0 and hand_cards[j] < hand_cards[j - 1]:

    hand_cards[j], hand_cards[j - 1] = \
    hand_cards[j - 1], hand_cards[j]

    j = j - 1

# Sorted hand_cards
print(hand_cards) Pseudocode of interest
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ALGORITHM RUNTIME

for i in range(len(hand_cards)):
j = i
while j > 0 and hand_cards[j] < hand_cards[j - 1]:

    hand_cards[j], hand_cards[j - 1] = \
    hand_cards[j - 1], hand_cards[j]

    j = j - 1

◦ Let n = len(hand_cards)
◦ Assume swap, assignment, and math operations cost 1

◦ Loop analysis
◦ Outer loop iterates n times
◦ Inner loop iterates n - j times at the worse



ALGORITHM 
RUNTIME
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If T(n) is the time it takes to run the 
algorithm, then,

What if we can simplify this further, as 
j is variable?



BIG-O NOTATION
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In the runtime equation, we can leave 
out the lower-order terms and the 
coefficients

We can conveniently express this as



BIG-O NOTATION: 
FORMAL
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Interpretation: f(n) grows no faster 
than g(n), or “f(n) ≤ g(n)”



BIG-O NOTATION
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… can then be simplified in terms of 
the Big-O notation to …

This is the worst-case time 
complexity of our card-sorting 
algorithm.



OTHER “O” 
NOTATIONS
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The opposite of the Big-O is the 
Big-Omega notation, where “g(n) ≥ 
f(n)”.

If you want to note that “f(n) = g(n)”, 
then we use the Big-Theta notation.

The whole family of these are formally 
called Bachmann-Landau notations



BIG-O NOTATION: 
RULES
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◦ Remove multiplicative constants
◦ Remove lower-order terms in a 

polynomial equation
◦ Higher exponent values grow 

faster
◦ Exponentials grow faster than 

polynomials
◦ Polynomials grow faster than 

logarithms



BIG-O NOTATION: 
RULES
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◦ Many computer operations can 
be assumed to be of constant 
time (or O(1))
◦ Math, relational, logical 

operations
◦ Assignment
◦ Printing/scanning strings

◦ Loops, recursions, and 
conditionals in loops need to be 
investigated



BIG-O NOTATION: 
EXAMPLES
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Linearithmic:

Polynomial:

Exponential:

Factorial:



BIG-O NOTATION: 
WHY?
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◦ The notation provides us with a 
platform-independent measure 
of runtime

◦ Runtime among different 
algorithms are easy to compare



CONSIDER...
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… finding the shortest path from 
an origin to destination using 
depth-first search (DFS).
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PYTHON CODE
# Assume 5 nodes
road_net = {0: [1, 4], 1: [0, 2], 2: [1, 3], 3: [2, 4], 4: 
[0, 1, 3]}
visit_dist = [-1 for x in range(len(road_net))]

def dfs(this_dist, current_node):
if visit_dist[current_node] >= 0:

    return
    

print(current_node)
visit_dist[current_node] = this_dist

    
for each_nbr in road_net[current_node]:

    dfs(this_dist + 1, each_nbr)

start_node = 0
dfs(0, start_node)
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# Assume 5 nodes
road_net = {0: [1, 4], 1: [0, 2], 2: [1, 3], 3: [2, 4], 4: 
[0, 1, 3]}
visit_dist = [-1 for x in range(len(road_net))]

def dfs(this_dist, current_node):
if visit_dist[current_node] >= 0:

    return
    

print(current_node)
visit_dist[current_node] = this_dist

    
for each_nbr in road_net[current_node]:

    dfs(this_dist + 1, each_nbr)

start_node = 0
dfs(0, start_node)

TIME COMPLEXITY

Pseudocode of interest



def dfs(this_dist, current_node):
if visit_dist[current_node] >= 0:

    return
    

print(current_node)
visit_dist[current_node] = this_dist

    
for each_nbr in road_net[current_node]:

    dfs(this_dist + 1, each_nbr)
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TIME COMPLEXITY

◦ Let n be the number of nodes

◦ Recursion analysis
◦ A node “visits” at most n_neighbor other nodes

◦ May visit more than once
◦ Every neighbor connection (edge) is checked

loop n_{nbr} 
times

goes through if 
just visited



TIME COMPLEXITY
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From the observations, the 
worst-case time complexity of DFS is

where |V| is the number of nodes and 
|E| the number of edges.



TIPS
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◦ Make sure your algorithm is 
correct
◦ Review EEE 121
◦ Practice math proof 

techniques
◦ Use Floyd-Hoare logic

◦ Practice keeping track of loops 
and recursions



RESOURCES
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◦ Algorithms by Dasgupta, 
Papadimitriou, and Vazirani

◦ Your EEE 121 resources

https://cseweb.ucsd.edu/~dasgupta/book/index.html
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