
CoE 163
Computing Architectures and Algorithms

02a: Asymptotic Analysis

MAXIMIZING
ALGORITHMS

2

When formulating algorithms,
“efficiency” and “maximization”
are the next important things
after “correctness”

◦ Time (set-up, run, save)
◦ space (memory, storage)

TIME EFFICIENCY

3

We can measure runtime of an
algorithm in terms of ”basic
computer steps”

◦ Each computer is different
◦ Platform-independent

measure
◦ Expressed as a function of

the size of the input n

CONSIDER...

4

You are playing Tong-its and
have a starting hand of 12 cards
that you would like to sort by
value.

SORTING BY HAND

5

Consider a usual method where
people scan all their cards, get
the leftmost unsorted card, and
insert it in the appropriate place
on the sorted list.

Do this repetitively while tracking
the boundary of the sorted and
unsorted cards.

6

SORTING BY HAND

A 3 10 5 7

J K 6 Q 8

4

2

7

SORTING BY HAND

A 3 10 5 7

J K 6 Q 8

4

2

8

SORTING BY HAND

A 3 10 5 7

J K 6 Q 8

4

2

9

SORTING BY HAND

A 3 10 5 7

J K 6 Q 8

4

2

10

SORTING BY HAND

A 3 5 10 7

J K 6 Q 8

4

2

11

SORTING BY HAND

A 3 5 7 10

J K 6 Q 8

4

2

SOLVING THE
PROBLEM

12

◦ How do we solve this problem
as humans?

◦ How do we translate our
solution into computer code?

◦ How do we decompose this
problem if it is too big?

◦ How do we make it fast enough
for our purposes?

PROBLEM
DECOMPOSITION

13

◦ Save the 12 cards in an array
◦ Implicitly divide the array into

two parts - sorted and unsorted
◦ When a lowest-valued element

is picked from the unsorted set,
put it at the end of the sorted
set by swapping adjacent
elements

14

PYTHON CODE
import random

hand_cards = [random.randint(1, 13) for x in range(12)]

Unsorted hand_cards
print(hand_cards)

for i in range(len(hand_cards)):
j = i
while j > 0 and hand_cards[j] < hand_cards[j - 1]:

 hand_cards[j], hand_cards[j - 1] = \
 hand_cards[j - 1], hand_cards[j]

 j = j - 1

Sorted hand_cards
print(hand_cards)

ALGORITHM
RUNTIME

15

How do we measure the runtime of
this algorithm in terms of “basic
computer steps”?

◦ Assume certain operations cost
one step

◦ Think in terms of data input size
n

◦ Loop counting and guessing of
loop invariants are key skills

16

ALGORITHM RUNTIME
import random

hand_cards = [random.randint(1, 13) for x in range(12)]

Unsorted hand_cards
print(hand_cards)

for i in range(len(hand_cards)):
j = i
while j > 0 and hand_cards[j] < hand_cards[j - 1]:

 hand_cards[j], hand_cards[j - 1] = \
 hand_cards[j - 1], hand_cards[j]

 j = j - 1

Sorted hand_cards
print(hand_cards) Pseudocode of interest

17

ALGORITHM RUNTIME

for i in range(len(hand_cards)):
j = i
while j > 0 and hand_cards[j] < hand_cards[j - 1]:

 hand_cards[j], hand_cards[j - 1] = \
 hand_cards[j - 1], hand_cards[j]

 j = j - 1

◦ Let n = len(hand_cards)
◦ Assume swap, assignment, and math operations cost 1

◦ Loop analysis
◦ Outer loop iterates n times
◦ Inner loop iterates n - j times at the worse

ALGORITHM
RUNTIME

18

If T(n) is the time it takes to run the
algorithm, then,

What if we can simplify this further, as
j is variable?

BIG-O NOTATION

19

In the runtime equation, we can leave
out the lower-order terms and the
coefficients

We can conveniently express this as

BIG-O NOTATION:
FORMAL

20

Interpretation: f(n) grows no faster
than g(n), or “f(n) ≤ g(n)”

BIG-O NOTATION

21

… can then be simplified in terms of
the Big-O notation to …

This is the worst-case time
complexity of our card-sorting
algorithm.

OTHER “O”
NOTATIONS

22

The opposite of the Big-O is the
Big-Omega notation, where “g(n) ≥
f(n)”.

If you want to note that “f(n) = g(n)”,
then we use the Big-Theta notation.

The whole family of these are formally
called Bachmann-Landau notations

BIG-O NOTATION:
RULES

23

◦ Remove multiplicative constants
◦ Remove lower-order terms in a

polynomial equation
◦ Higher exponent values grow

faster
◦ Exponentials grow faster than

polynomials
◦ Polynomials grow faster than

logarithms

BIG-O NOTATION:
RULES

24

◦ Many computer operations can
be assumed to be of constant
time (or O(1))
◦ Math, relational, logical

operations
◦ Assignment
◦ Printing/scanning strings

◦ Loops, recursions, and
conditionals in loops need to be
investigated

BIG-O NOTATION:
EXAMPLES

25

Linearithmic:

Polynomial:

Exponential:

Factorial:

BIG-O NOTATION:
WHY?

26

◦ The notation provides us with a
platform-independent measure
of runtime

◦ Runtime among different
algorithms are easy to compare

CONSIDER...

27

… finding the shortest path from
an origin to destination using
depth-first search (DFS).

28

GRAPH TRAVERSAL

0

4

1

3

2

29

GRAPH TRAVERSAL

0

4

1

3

2

30

GRAPH TRAVERSAL

0

4

1

3

2

31

GRAPH TRAVERSAL

0

4

1

3

2

32

GRAPH TRAVERSAL

0

4

1

3

2

33

GRAPH TRAVERSAL

0

4

1

3

2

34

GRAPH TRAVERSAL

0

4

1

3

2

35

PYTHON CODE
Assume 5 nodes
road_net = {0: [1, 4], 1: [0, 2], 2: [1, 3], 3: [2, 4], 4:
[0, 1, 3]}
visit_dist = [-1 for x in range(len(road_net))]

def dfs(this_dist, current_node):
if visit_dist[current_node] >= 0:

 return

print(current_node)
visit_dist[current_node] = this_dist

for each_nbr in road_net[current_node]:

 dfs(this_dist + 1, each_nbr)

start_node = 0
dfs(0, start_node)

36

Assume 5 nodes
road_net = {0: [1, 4], 1: [0, 2], 2: [1, 3], 3: [2, 4], 4:
[0, 1, 3]}
visit_dist = [-1 for x in range(len(road_net))]

def dfs(this_dist, current_node):
if visit_dist[current_node] >= 0:

 return

print(current_node)
visit_dist[current_node] = this_dist

for each_nbr in road_net[current_node]:

 dfs(this_dist + 1, each_nbr)

start_node = 0
dfs(0, start_node)

TIME COMPLEXITY

Pseudocode of interest

def dfs(this_dist, current_node):
if visit_dist[current_node] >= 0:

 return

print(current_node)
visit_dist[current_node] = this_dist

for each_nbr in road_net[current_node]:

 dfs(this_dist + 1, each_nbr)

37

TIME COMPLEXITY

◦ Let n be the number of nodes

◦ Recursion analysis
◦ A node “visits” at most n_neighbor other nodes

◦ May visit more than once
◦ Every neighbor connection (edge) is checked

loop n_{nbr}
times

goes through if
just visited

TIME COMPLEXITY

38

From the observations, the
worst-case time complexity of DFS is

where |V| is the number of nodes and
|E| the number of edges.

TIPS

39

◦ Make sure your algorithm is
correct
◦ Review EEE 121
◦ Practice math proof

techniques
◦ Use Floyd-Hoare logic

◦ Practice keeping track of loops
and recursions

RESOURCES

40

◦ Algorithms by Dasgupta,
Papadimitriou, and Vazirani

◦ Your EEE 121 resources

https://cseweb.ucsd.edu/~dasgupta/book/index.html

CoE 163
Computing Architectures and Algorithms

02a: Asymptotic Analysis

