
CoE 163
Computing Architectures and Algorithms

02b: Amortized Analysis



TIME COMPLEXITY

2

The basic asymptotic analysis 
method earlier gives us a good 
estimate of the worst-case 
runtime of an algorithm.

However, this analysis may 
sometimes be too pessimistic as 
we may naively sum the 
individual runtimes.



CONSIDER...

3

How does the “vector” data type 
in C++ work? It is a dynamic 
array!



4

DYNAMIC ARRAY

C o E 1

You can append an element to this array, but the array 
grows to twice its size if it is full to accommodate the 
element.

C o E 1 6

C o E 1 6 3

6

3



5

DYNAMIC ARRAY

C o E 1 6

Growing works by creating a new array of twice its size, and 
then copying everything to the new array.

C o E 1 6 3

3



6

Assuming it takes constant time 
(O(1)) to append an item, the copy 
operation would take O(n).

The worst-case scenario is the array 
will grow every time an item is 
appended.

Append runtime is therefore

too pessimistic!

NAIVE TIME 
COMPLEXITY



7

This method of summing the 
worst-case run times per algorithm is 
not accurate because an array copy 
only happens when the array 
becomes full.

We need another method that finds 
the average cost of each operation in 
an algorithm.

NAIVE TIME 
COMPLEXITY



8

Amortized analysis deals with finding 
the worst-case run time by analyzing 
each operation, not each algorithm.

It is “amortized” because it aims to 
average out the “expensive” 
operations among a series of 
operations.

AMORTIZED 
ANALYSIS



9

◦ Aggregate
◦ Average out the operation run 

time with the size of input
◦ Accounting

◦ Assign a value to each 
operation and balance them 
like an accounting sheet

◦ Potential 
◦ Formulate a potential function 

that keeps track of run time 
similar to the accounting 
method

AMORTIZED 
ANALYSIS METHODS



10

◦ Determine worst-case runtime of 
entire sequence of operations and 
divide this runtime with the number 
of operations in sequence

◦ Consider cost of each operation 
separately

AGGREGATE 
METHOD



11

AGGREGATE METHOD

C o E 1

Assume array has initial size of 2

Append is O(1) and append + copy is O(1) + O(n)

Array grows every iteration index with a power of two

A+C A+C A+C

1 2 3 4 5 6 7 8 9

Array

Op ID



12

The cost of the append operator at the ith 
iteration can be expressed as

Then, we can compute for the aggregate 
run time

AGGREGATE 
METHOD



13

The amortized worst-case runtime is 
apparently constant (O(1))!

AGGREGATE 
METHOD

Math 
magic 
here



14

◦ We come up with an initial “cost” of 
running the algorithm

◦ We balance the contents of our 
“bank” by assigning appropriate 
“costs” to each operation

◦ The general goal is to save “cost” 
from the cheap operations to pay for 
the expensive operations without 
going broke (negative “cost”)

◦ One approach is trial and error

ACCOUNTING 
METHOD



15

ACCOUNTING METHOD

C o E 1

Append is ₱1 and append + copy is ₱(i + 1)

Let’s try having ₱1 in our account every iteration

Negative balance!

A+C A+C A+C

1 2 3 4 5 6 7 8 9

Array

Op ID

1 1 -1 -1 -6 ...Old 
Bal

0 -2 -2 -6 ...New 
Bal



16

ACCOUNTING METHOD

C o E 1

Append is ₱1 and append + copy is ₱(i + 1)

Let’s try having ₱2 in our account every iteration

Still negative balance!

A+C A+C A+C

1 2 3 4 5 6 7 8 9

Array

Op ID

2 3 2 3 0 0Old 
Bal

1 0 1 -2 -1 ...New 
Bal



17

ACCOUNTING METHOD

C o E 1

Append is ₱1 and append + copy is ₱(i + 1)

Let’s try having ₱3 in our account every iteration

Looks promising!

A+C A+C A+C

1 2 3 4 5 6 7 8 9

Array

Op ID

3 5 5 7 5 7 9 11 5Old 
Bal

2 2 4 2 4 6 8 2 4New 
Bal



18

An inductive proof is needed to show that 
the amortized worst-case runtime is 
actually 3.

Prove that

… for C(hat)_i = 3, the amortized runtime.

ACCOUNTING 
METHOD



19

Base case

If array is of size 0 initially, then the “cost” of ₱3 
can pay for the operation, which costs ₱1.

Inductive step

Assuming that the array has just completed a 
copy step. The array will be half-empty, and we 
need to encounter (n / 2) - 1 appends (with at 
least ₱(n-2) saved) before an append + copy 
operation takes place, which costs ₱(n + 1).

₱3 as c(hat)_i satisfies this equation.

ACCOUNTING 
METHOD



20

◦ Similar to the accounting 
method but models the cost 
(potential) as a function of the 
data structure variables

◦ Most flexible of all methods as it 
depends only on the current 
state of the data structure used

POTENTIAL METHOD



21

Define a potential function with a 
base and general value

The amortized worst-case runtime is 
defined as

… where d is the state of data at the 
ith iteration of the algorithm

POTENTIAL METHOD



22

Cost analysis

We can treat our potential function like a bank 
account. We define zero potential if the array has 
just doubled its size. Potential increases as the 
number of elements reach the maximum size of 
the array.

Function formulation

We formulate the function in terms of the size of 
the array and the number of elements in it. The 
maximum potential of the array is its length

POTENTIAL METHOD



23

Computation

We split the analysis into two since there are two 
operations associated with inserting an element.

Append only

POTENTIAL METHOD



24

Computation

We split the analysis into two since there are two 
operations associated with inserting an element.

Copy + Append

We can formulate other potential functions, but 
the amortized time may be different in each case.

POTENTIAL METHOD



TIPS

25

◦ Practice how to use 
induction to prove runtimes

◦ Practice how to balance 
spreadsheets and accounts

◦ Jog your abstract thinking, 
educated guessing, and 
trial-and-error skills



RESOURCES

26

◦ Resource from the 
University of Hawaii

◦ Resource from the Cornell 
University

◦ Resource from MIT

https://web.archive.org/web/20171220005939/http://www2.hawaii.edu/~suthers/courses/ics311f17/Notes/Topic-15.html
http://www.cs.cornell.edu/courses/cs3110/2011sp/Lectures/lec20-amortized/amortized.htm
http://www.cs.cornell.edu/courses/cs3110/2011sp/Lectures/lec20-amortized/amortized.htm
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2012/lecture-notes/MIT6_046JS12_lec11.pdf


CoE 163
Computing Architectures and Algorithms

02b: Amortized Analysis


