
CoE 163
Computing Architectures and Algorithms

01a: Algorithms Review

REMEMBER EEE 121?

2

Data structures and
algorithms are key in solving
any computer engineering
problem.

Knowledge of these basic
concepts enable you to solve
large real-world problems.

BASIC DATA
STRUCTURES

3

◦ Basic
◦ Numbers
◦ Strings
◦ Sets

◦ Linear
◦ Arrays, linked lists
◦ Stacks, queues

◦ Graph
◦ Adjacency matrix
◦ Adjacency list
◦ Disjoint set

BASIC DATA
STRUCTURES

4

◦ Trees, heaps
◦ Binary tree (AVL, red-black)
◦ String trees (trie)

◦ Geometry
◦ Point pairs
◦ Polygon list

5

DATA STRUCTURES: LINEAR

A B C D E

Array: elements of usually same type arranged linearly

Linked list: a loosely-connected array

A B C D E

6

DATA STRUCTURES: LINEAR

A B C D E

Stack: last in, first out; single-ended array
in

outA B C D E

Queue: first in, first out; double-ended array

in

out

DATA STRUCTURES:
LINEAR

7

◦ Arrays are useful for fixed and
arranged things
◦ AA battery chargers
◦ Piano keys

◦ Linked lists are useful for things
where middle elements can change
◦ Clinic appointments with

cancellations
◦ Word editing (letter

insertion/deletion)

DATA STRUCTURES:
LINEAR

8

◦ Stacks are useful for things that
need stacking - usually vertical
◦ Box stacking in warehouses
◦ Tetris

◦ Queues are useful for things that fall
in line - usually horizontal
◦ Queueing systems in fast food
◦ Groceries sorted by expiry

date
◦ A stack and a queue in one is called

a deque (double-ended queue)

9

DATA STRUCTURES: GRAPH

Adjacency matrix: 2D array with indices as the two nodes and
value the weight or interconnection flag

0 0 1

1 0 1

1 0 0

● Rows correspond to origin
node and columns the
destination node
○ Can be reversed

depending on how you
code the graph

○ An undirected graph
can be represented as
a symmetric matrix

● If an element along the
diagonal is nonzero, there is an
edge to the element itself

node 0 node 1 node 2

node 0

node 1

node 2

0 1

2

destination

or
ig

in

10

DATA STRUCTURES: GRAPH

Adjacency list: Array of variable-length arrays listing neighbors of
a node

2

0 2

0

● Saves space as it does
not allocate a vxv matrix (v
the number of nodes)

● An edge to a node itself
can be represented by
listing itself in its
adjacency list

node 0

node 1

node 2

0 1

2

no
de

neighbors

11

DATA STRUCTURES: GRAPH

Disjoint set: Array with indices as node labels and value denoting
which node is its parent

2 0 -1
● This is actually a set data

structure, but usually
comes up in graphs

● Disjoint sets do not have
cycles and have only one
parent

● Traversal is recursive and
can be implemented
efficiently if paths are
compressed

0 1

2

node 0 node 1 node 2
node

parent

DATA STRUCTURES:
GRAPH

12

◦ Adjacency matrices are useful for
dense and small graphs
◦ “Flow Free” game

◦ Adjacency lists are useful for sparse
and large graphs
◦ Road networks

◦ Disjoint sets are useful for
child-parent-like relationships
◦ Family trees

13

DATA STRUCTURES: TREE

Binary tree: Tree that has at most two children

A C D E B
● There are different kinds of

binary trees
○ AVL, red-black, splay…

● Balancing is important to
ensure efficient traversal and
mutation

● Implement as a graph, linked
“list”, or 1D array
○ Linked “list” consists of

nodes, with each
tracking the left and
right subtrees

○ 1D array arranged as
breadth-first traversal

 0 1 2 3 4
node

A

C D

E B

14

DATA STRUCTURES: TREE

Heap: Tree that satisfies the heap property (parent root has
higher/lower value than children)

10 4 8 2 3
● Max heap has the

highest-valued node at
the root

● Can be stored as a 1D
array the same as a binary
tree

● Balancing is important to
maintain the heap
property

10

4 8

 0 1 2 3 4
node

2 3

15

DATA STRUCTURES: TREE

Trie (Prefix tree): Tree that locates specific keys within a set

d i o r
● A node is defined by its

parent prefix and its value
concatenated

● Can be stored as a 1D
array with the suffix as
value

● Children of leaf nodes
need to be represented
with a symbol to denote
end of trie

d i

 0 1 2 3 4
node

do dr

DATA STRUCTURES:
TREE

16

◦ Binary trees are useful for balanced
matching and searching
◦ Parentheses matching

◦ Heaps are useful for maintaining
order while mutating data
◦ Senior citizen lane in groceries

◦ Tries are useful for matching and
finding
◦ String searching

BASIC ALGORITHMS

17

◦ Graph theory
◦ Traversal and shortest paths
◦ Minimum spanning tree

◦ Problem solving paradigms
◦ Complete search and

recursion
◦ Divide and conquer
◦ Dynamic programming/greedy

BASIC ALGORITHMS

18

◦ Math and geometry
◦ Probability and statistics
◦ Plane/analytic/spherical

geometry
◦ String processing

◦ String matching
◦ Trees, tries, and arrays

◦ Data processing
◦ Sorting
◦ Filter and transformation

19

ALGORITHMS: GRAPH
TRAVERSAL
Graph traversal: Search by visiting a node and its neighbors
systematically

● Depth-first search (DFS): visit
the deepest part of a path,
then backtrack
○ Uses a stack to track

nodes being visited
● Breadth-first search (BFS): visit

by layer
○ Uses a queue to track

nodes being visited
● Traversal can be modified to

determine shortest path
between two nodes

Traversal order
● DFS: A-C-E-B-D
● BFS: A-C-D-E-B

A

C D

E B

20

ALGORITHMS: SHORTEST PATH

Shortest path: Find path between two nodes that has the
minimum weight

● Dijkstra’s: visit and “relax”
edges to find
minimum-weighted path
○ A priority queue can be

used to pick which
nodes to visit first

● Bellman-Ford: similar to
Dijkstra’s but works on
negative weights
○ Uses dynamic

programming to “relax’
edges

Some shortest paths
● A to D: costs 3 (A-D)
● A to E: costs 5 (A-C-E)

A

C D

E B

1 3

2

54

8

21

ALGORITHMS: MINIMUM
SPANNING TREE
Minimum spanning tree: Find set of edges that cumulatively
have the total minimum weight and still connects all nodes

● Kruskal: Sort edges from the
lowest weight and get those
on top if the two nodes are not
connected yet

● Prim: Select a random node
and pick a connecting edge
with the lowest weight. Collect
edges from the resulting
connected node and repeat
choosing of edges among all
the connected nodes in such
fashion.

Minimum edges needed
● With weights 1, 2, 4, 5

A

C D

E B

1 3

2

54

8

22

ALGORITHMS: PROBLEM
SOLVING
Complete search: Iterate through all possibilities of a solution
systematically

● Brute force: Create nested
loops or recursions to
explore all possibilities

● A*: Explore nodes with the
lowest cost first

● Graph traversal: Reform
problem into a graph
problem and traverse
through all possibilities

Put queens on a grid where they do not
threaten each other

● Put queens by row, taking care to
put them in separate columns

● Check for threats at the diagonal and
backtrack to previous layout if there
are

23

ALGORITHMS: PROBLEM
SOLVING
Divide and conquer: Recurse through a problem by splitting it
into n similar problems and consolidating the solutions

● Binary search on a tree is
an example

● Bisection method is useful
in arriving at a numerical
solution

You have a cat of length a. Find two
cats on a row of cats ordered from
shortest length that is a little longer
and little shorter than yours.
● Use binary search to find the

floor and ceiling lengths

1 2 3 5 7 10 12

row of cats

Your cat is of length 8
Go to segments 5-12, 5-7, 10-12
Closest lengths are 7 and 10

24

ALGORITHMS: PROBLEM
SOLVING
Dynamic programming: Prune complete search by observing
recursion leading to an optimal solution

● Top-down: Recurse from
the top and parts of the
solution for later rebuilds

● Bottom-up: Build up to
the solution from base
cases

● Build order is important!
● Solution configuration can

be recovered by saving
previous iterations

Determine grouping of matrix chain
multiplications that will yield the smallest
number of operations

● A: 3x2, B: 2x5, C: 5x4; E = ABC
● Group matrices like complete search
● Overwrite saved solution if it is

smaller

A B C

A 0 30 64

B 0 40

C 0

fr
om

until

25

ALGORITHMS: PROBLEM
SOLVING
Greedy: Get what is best at the moment

● Special case of dynamic
programming that satisfies
the greedy property

● Although it does not work
all the time, it can yield
fast and slightly
suboptimal solutions

● When in doubt, use
dynamic programming
instead

Buy two take one free promo! Find
the maximum discount you can get
given your basket items.
● Go to the counter with the

three most expensive items on
your basket every time

1 2 3 5 7 10 12

shopping basket

checkout

Saved 9!

26

ALGORITHMS: MATH AND
GEOMETRY
Basic arithmetic: Remember elementary axioms, factors, etc.

● Radix/Base conversion
● Numerical pattern finding
● Fractions
● Logarithms and

exponents
● Prime numbers
● Modular arithmetic
● Euclidean algorithm

Three friends share a garden - one
worked A hours and another worked
B hours to clean up the whole
garden. The third friend paid D
dollars. How much should A get?

A, B, and C have equal shares. A and
B clean up their respective areas plus
extra time that they give up to clean
C’s area.

27

ALGORITHMS: MATH AND
GEOMETRY
Probability and statistics: Apply basic probability axioms and
combinatorics

● Permutations and
combinations

● Bayes’ theorem,
conditional probabilities

● Binomial, Catalan,
Fibonacci numbers

Monty Hall problem - find the chance
of winning when you switch to
another door

? goat ?

doors

If you stayed with your original choice, it’s as
if you just opened that door straight away, so
the chance is ⅓.

The chance if switching is therefore ⅔.

28

ALGORITHMS: MATH AND
GEOMETRY
Geometry: Apply 2D and 3D geometry theorems and conjectures

● Line and plane
intersections

● Area, perimeter, volume
● Convex hull
● Point inside polygon
● Be careful of numerical

errors when using
floating-point!

29

ALGORITHMS: STRINGS

String matching, processing, and manipulation

● Knuth-Morris-Pratt
algorithm

● String alignment
● Suffix trie, prefix tree,

arrays

30

ALGORITHMS: DATA
PROCESSING
Apply algorithms to sort, filter, and transform data

● Bubble, insertion,
selection sorts

● Priority queue
● Summation and

production
● Bit masking
● Character to ASCII value

TIPS

31

◦ Learn new algorithms and data
structures

◦ Be exposed to a lot of known
CS problems

◦ Practice by trying out online
judges, solving some problems,
and getting used to input/output
formatting

CoE 163
Computing Architectures and Algorithms

01a: Algorithms Review

