

DATA STRUCTURES

Aside from the built-in primitive
types, Rust also has collection
data types, which are
variable-sized structures that can
have multiple values.

o Vec
o String
o HashMap

VECTORS

A vector (Vec) is a collection data type that is the same as an array but it
can have a variable number of values. All values should have the same
data type.

! Vectors can be initialized by using the Vec: : new () constructor or the
vec ! macro.

let upd grades: Vec <£32>
let upd scale = vec![1.0,

VECTORS: VALUE ACCESS

Example

Elements inside vectors can be

. . . let upd scale = vec!|
accessed using bracket indexing or 1.0,
the get () method. Indices start at
0.

Note that bracket indexing works
by borrowing, so an & is needed
before the indexing operation. In printlni(
addition, get () returns an Option
enum,

2.0,
3.0,
4
5

0

0
.0,

0

if let Some (v) = upd scale.get @)
println!() &

}

else {
println!(

}

VECTORS: MUTABILITY

Do not forget the mut keyword if we want the vector to be editable (e.g.
resizable and appendable)!

let mut upd grades: Vec <£32>

= Vec::new()
let mut upd scale = vec![1.0, 2.0, 3.0, 4.

VECTORS: MUTABILITY

. E |
Elements can be inserted or S
. let mut nums 2
removed in a vector. The removed
element is usually returned for
reference.

nums .push (4) ;
nums.push (5) ;

In addition, vectors can also
emulate deques.

let v = nums.pop () .unwrap () ;

nums.insert (0, 11);

let x = nums.remove(2);

VECTORS: ITERATION

Example

Every element inside a vector can
. let mut upd scale = vec! |
be accessed using a for loop. 1.0,

If each element of a Vec is to be
edited inside the loop, it should be
1) mutable, and 2) a smut keyword
should be added in the for loop.
Note that the * (deref) operator iiil&fg‘fz;upd_scale {
beside the index is required to

access the value.

2.
3.0,
4

5

1 in &upd scale {

println! (

VECTORS: MULTIPLE DATA "HACK"

Vectors can "hold" multiple Example
enum UserType {

elements by letting its values be an Admin (bool, ul6),

enum User { chown: uloc },
) Unknown,

Usingamatchorif let can

handle the different variants of an accts = vec!|
UserType: :Admin ttrue, 00777),

enum. UserType: :User { chown: 00444 1},

UserType: :Unknown

VECTORS: OWNERSHIP

Vector elements follow the standard ownership rules. If they are accessed
and saved in variables the vec should not be edited after and in the same
SCope.

let mut up grades = vec![1.0, 2.0, 3.

let first elm = &up grades[0];

up grades.push(5.0);

println! (

VECTORS: OWNERSHIP

Inserted elements are moved to the
vector. Hence, the element cannot

be used anymore after.

Example

let mut my strs = vec!|
.to string(),
.to string(),

.to _string();

my strs.push(c);

let d = my strs.pop () .unwrap();

10

VECTORS: OWNERSHIP

Looping through each element also
follows ownership rules. Elements
may not be accessible anymore if a
reference to the vector is not
requested and each element has
the Move trait.

let mut upd scale

String::from(

String::from(

for 1 in upd scale {
println! (
}

println! (

Example

11

STRINGS

A string (String) is a collection data type that is the same as a Vec <u8>. It holds
a UTF-8 representation of a human-readable sequence of glyphs.

Strings can be initialized by using the String: :new () constructor or converted
from an string literal using the String: :new () constructor or the to string ()
method.

let blank str = String::new();
let hello vl = String::from() s
let hello v2 = .to_string();

12

8
&

STRINGS: MUTABILITY

Do not forget the mut keyword if we want the string to be editable (e.qg.
editable)!

let mut blank str = String::new();
let mut hello vl String::from() ;
let mut hello v2 .to_string();

13

STRINGS: MULTILINGUAL

Because strings are encoded in UTF-8, we can set a variable to any string
from any language all over the world without problems.

let hello vl String::from/(g
let hello v2 .to _string();
let hello v3 .to_string();

14

STRINGS: UPDATE

We can append literals at the end of a string using the push () (character)
or push str () (string) methods.

We can concatenate a string with a literal using the + operator.

let mut hello str = String::from/(
hello str = hello str +

hello str.push () ;

hello str.push str(

println! (

15

&

STRINGS: UPDATE OWNERSHIP

When using the + operator to join two strings from two variables, the left
operand is moved while the second operand should be borrowed.

let mut hello str = String::from/(

let world str = ;
let hello str vZ2 = hello str + &world str;

println! () ;

16

STRINGS: UPDATE MULTIPLE

Multiple calls of the + operator can be reduced to a more readable call
using the format ! macro. This is the same as the print!/println!
macro except that it returns a String.

[Unlike the + operator, all variables in the format ! macro are implicitly
borrowed.

let mut hello v0 = String::from(
let hello vl = hello v0 + +
let hello v2 = format! (

println! () g

STRINGS: INDEXING

Due to the nature of UTF-8, a glyph can be represented between one to
four bytes. Normal indexing will not compile.

For example, an ASCII character needs one byte, but a Japanese
hiragana glyph needs three bytes.

let hello en String::from/(
let hello jp String::from/(

println! (, &hello en[0]);

println! (, &hello jpl[0]);

18

STRINGS: INDEXING

Example

A way to process each character is
to iterate through them using a for
loop. The string should either be) ;
converted as chars () oras
bytes ().

let hello jp = String::from(

for v in hello jp.bytes() {
println! () ;

}

for v in hello jp.chars () {

println! () ;
}

SLICES

A slice is a contiguous sequence of elements in a collection. Range
notation is used to get a slice.

Note that a slice is a reference (&str), and hence, is borrowed. String
literals are slices!

"Indexing" can be done by slicing a portion of the string to get a glyph.

let hello jp = String::from(

let kon = &hello jpl.. 6];
let nichi = g&hello jp[6..12];

let wa = &hello jpl[1l2..];

20

SLICES: COLLECTIONS

A slice stores the starting element and the length.

In general, any collection can be sliced. Arrays and Vecs can be sliced,
which will be annotated with data type & [dtype].

A slice can also be mutable. Indexing from O will be relative to the slice
itself.

let mut vec ints = vec![3, 4, 5,
let first = &vec ints[0];
let after first = &vec ints[l..];

let mut after second = &mut vec ints[2..];

after second[0]

21

HASHMAP

A hashmap (HashMap) is a collection data structure that stores values
that can be indexed with a key. This key is unique across the whole
hashmap and is not limited to integers. Do not forget the mut keyword if
we want the hashmap to be editable!

The HashMap module needs to be used to use hashmaps in your code.

use std::collections::HashMap;

let blank map: HashMap <String, £64> = HashMap::new();

let mut scores = HashMap::from([

(String: :from(

(String: :from (

1)z

22

l HASHMAP: VALUE ACCESS

.

Similar to vectors, bracket indexing or the get () method can be used to
access the value associated with a key.

The key to look up should be provided as a reference.

let v = scores.get() .copied () .or unwrap(-1);

let v _v2 = scores|

23

.

HASHMAP: ITERATION

Every key-value pair (an entry)
inside a hashmap can be accessed
using a for loop. Note that the
loop accesses entries in arbitrary
order.

There is also an option to iterate
through the keys only or the values
only.

for (k, v) in &scores {

println! () ;

}

for &v in scores.values ()

println! () 5

}

{

Example

24

HASHMAP: MUTABILITY

We can insert and remove
key-value pairs in a hashmap. If a scores.insert |

key exists, its value will be .to_string (),
overwritten with the newly-inserted
value.

scores.insert (

.to _string(),

let a = scores.remove (
.to string/()

) .unwrap () ;

Example

25

HASHMAP: UPDATE

We can get an Entry enum of a
hashmap to update its values under
specific cases. One is to insert a
value only if the key does not exist.

Example

scores.entry (
.to _string()
) .or default (),

scores.entry (
.to string/()
) .or insert (1.5);

scores.entry (

.to _string()

) .or insert(3.0);

260

HASHMAP: OWNERSHIP

Keys and values are moved when inserted in a hashmap. Hence, they are
not available for use after.

let my str .to_string();
let my val .0;

scores.insert (my str, my val);

println! (

27

https://doc.rust-lang.org/stable/book

