
CoE 164
Computing Platforms

Machine Problem 01
Academic Period: 2nd Semester AY 2020-2021
Workload: 3 hours
Synopsis: Make your 2D matrix barcode more robust!
Submission Platform: Google Forms

Description
It is 1992, and you are working for a division that needs to keep track of thousands of
automotive parts. The division uses EAN barcodes to track them, which you’ve come to
realize as a pain in the back. You need to fill out several forms every day, and scan probably
the same barcode multiple times to automatically fill them.

One day, your division head suddenly had a wild idea - create a new barcode! “Since EANs
only encode a 13-digit number, why can’t we have barcodes having all the information we
need?”, your head said. Your attention was then turned to a game of Othello, where white
and black markers are arranged on a square board. These markers can stand for a bit, and
information can be encoded to fill the whole board. Your head then decided to work with
you on a barcode specification similar to a game of Othello.

Months went by, and after a year, your two-man team has developed a 2D barcode
specification! This barcode consists of black and white square “modules” arranged on a
square grid, which can be read by a relatively cheap camera in any orientation. It can even
encode three different data types - numbers, alphanumeric characters, and byte data. There
is one hiccup though - you want the barcode to sustain some kind of while still being

CoE 164 | Page 1 of 5

readable. Since this is a grid-type (or matrix) barcode, it is possible for the barcode to be
accidentally cut, spliced, or drawn over during transport. You have read something about
Reed-Solomon error-correcting codes, which were used in NASA space missions, and have
decided to apply these codes into your barcode. These codes will be appended to the data
to be encoded into the barcode, and generation of these codes will be written as a module
to a larger program that encodes data into this grid-type barcode.

Reed-Solomon error-correcting codes are actually a family of codes that can detect both
erasures and errors in a message. The most common and easier implementation of
generating such codes is through the “BCH view”, named after BCH
(Bose–Chaudhuri–Hocquenghem) codes. BCH codes can be constructed by using a
generator polynomial over a finite field. The message is expressed as a polynomial over this
field, and it gets divided by the generator polynomial in each iteration. The coefficients of
the remainder polynomial of this operation become the error-correcting codes associated
with that message.

Your barcode will have error-correction codes between 1 and 255 inclusive, with all of them
can be represented with a byte, or eight bits. In math jargon, we will do our division and
generation of the polynomial over the field . Operations on this finite field are to be𝐹

256
𝐹

256

done such that for a number , . In our “BCH view”, addition∃𝑛 ∈ 𝑁0 𝑛 ∈ 𝐹
256

 | 0 ≤ 𝑛 < 256

and subtraction of two numbers in this field is actually a single operation - an XOR
operation. An additional modulo operator may also be performed on the result so that its
value stays within the range 1 and 255.

Given a data or message represented as a string of bytes, error-correcting codes are
generated by first determining the number of codewords needed. Your barcode has a
version, pertaining to its size, and an ecc level, pertaining to how robust the barcode should
be. A higher ecc level can encode more codewords at the expense of being able to encode
only fewer data bytes. The table below shows the codewords that need to be generated
given an error-correction code (ecc) level and version of the barcode.

ecc level

version L M Q H

1 7 10 13 17

2 10 16 22 28

After determining the number of codewords to generate, a generator polynomial should be
built corresponding to codewords. The polynomial, still over , is given by𝑐 𝐹

256

𝑔(𝑥) = (𝑥 − α0)(𝑥 − α1)... (𝑥 − α𝑐−1)

CoE 164 | Page 2 of 5

=
𝑖=0

𝑐−1

∏ (𝑥 − α𝑖)

where , mirroring the fact that the message is encoded in bits. is called the primitiveα = 2 α
root. Since we are operating in a finite field, we would like to make sure that the powers of α

above 8 are still within 1 and 255, especially that, for example, under normalα8 = 28 = 256

math. Hence, to calculate , we multiply times, but every time the value becomes 256α𝑑 α 𝑑
or greater, it should be reduced to “modulo” (or XOR more accurately) 285 before
multiplying again. 285 is just a random number you came up with. Therefore, in our math

world, and , which looks odd when is directly substituted with its value.α8 = 29 α9 = 58 α
Additionally, when multiplying two powers of , the exponent should be reduced to moduloα
255 if the resulting exponent is 256 or greater. As the multiplication takes place, working
with the logs and antilogs of may be an essential step in making the process tenable.α

After a long time building the generator polynomial, it is now time to generate the
codewords themselves by dividing the original message with the generator polynomial. If

the message consists of bytes, then the message polynomial has degree , and is𝑁 𝑥𝑁−1

defined as the message bytes as a separate term, with the first byte paired with the highest
degree. For example, if the message bytes are [1, 6, 4], then the message polynomial is

therefore . Next, the generator polynomial corresponding to𝑚(𝑥) = 𝑥2 + 6𝑥 + 4 𝑔(𝑥) 𝑐

codewords is multiplied by and by to make sure that the exponents don’t get𝑥𝑁−1 𝑚(𝑥) 𝑥𝑐

too small (or negative) during division. Finally, is performed to obtain the codewords,𝑚(𝑥)
𝑔(𝑥)

which are the coefficients of the remainder.

To perform long division, we first get the coefficient of the highest term of and multiply𝑚(𝑥)
it with to get . Then, we “add” (or XOR more accurately) this and the message𝑔(𝑥) 𝑑(𝑥)
polynomial () to get the first running remainder polynomial . Now, we𝑑(𝑥) ⊕ 𝑚(𝑥) 𝑟

1
(𝑥)

perform these series of operations times, with the previous becoming the “new”𝑐 𝑟 (𝑥)

. After the long process, we get the final running remainder , whose coefficients𝑚 (𝑥) 𝑟
𝑐
(𝑥) 𝑐

will be the error-correcting bytes that we need.

With only a few weeks to spare before the next general division meeting, you are inclined to
finish this module fast so that you can demo the whole system successfully. Your division
head counts on you, too, as he is now busy with managerial work and cannot make time to
help you in the meantime.

CoE 164 | Page 3 of 5

Input
The input to the module starts with a number on a line indicating the number of𝑇
messages. Then, each message is provided in two separate lines. The first line consists of a
number indicating the version of the barcode, a letter indicating the error correction𝑉 𝑀
level needed for the message, and a number indicating the size, or number of bytes, of𝑁
the message. The next line consists of decimal numbers denoting the bytes of the𝑁
message itself.

Output
The output should consist of lines, with each line consisting of numbers. These𝑁 𝑖 𝐸
numbers denote the decimal numbers of the bytes of the codewords corresponding to the 𝑖
th message.

Example
Input
2
1 M 16
32 91 11 120 209 114 220 77 67 64 236 17 236 17 236 17
1 H 9
32 50 52 78 228 72 236 17 236

Output
196 35 39 119 235 215 231 226 93 23
135 83 157 250 127 45 83 50 167 179 104 18 214 60 194 94 77

Additional Description/Requirements
The module will only accept these range or set of variables:
𝑇 ≤ 10
𝑉 ∈ {1, 2}
𝑀 ∈ {'𝐿', '𝑀', '𝑄', '𝐻'}
1 ≤ 𝑁 ≤ 34

Since you are developing a barcode specification, you decided to write a short journal so
that you can refer to it when the time comes to formalize and standardize it. You decided to

CoE 164 | Page 4 of 5

write which programming language you used to write the algorithm and a short description

of the algorithms in that language 1) to obtain , 2) to obtain , and 3) to obtain theα𝑛 𝑔(𝑥)
codewords via long division. As you have access to the Future Web Archive™, you can use
any programming language of the future to develop your error-correcting codeword
generator module.

You luckily maintain a digital notebook of your general algorithm musings at work. Attached
with this paper is a file of your notes depicting your algorithm formulation. For more
information about the future of your error-correcting algorithm, you’ve also decided to visit
the Archive™ and found this link:

https://www.thonky.com/qr-code-tutorial/error-correction-coding

The website will exist in the year 2001 and is last updated in 2021, around 28 years after
your predicament! Further scrolling showed that your barcode specification will become
world-famous and ubiquitous starting 8 years after in 2002.

Upload both your module (as a single source code file; in TXT if the system does not
support the file extension) and your short journal (PDF or TXT file) to your remote repository
in your division.

Grading Rubric
5% Input handling - able to read the input specifications

10% Algorithm to compute α𝑛

30% Algorithm to build a generator polynomial
35% Algorithm to divide and output the codewords
20% Short journal

CoE 164 | Page 5 of 5

