

ERROR HANDLING

Rust has two main ways of
handling errors or exceptions in
code:

o Panicking
o Enumerations

ERRORS: PANIC

A panic is an unrecoverable error - one that cannot be resolved by
handling it separately.

We can induce a panic if we write code that will either cause an
! unrecoverable error at runtime, or force a panic using the panic! macro.

fn main() {
let a = vec![1,
println! (
panic! (

ERRORS:
RECOVERABLE

Most errors encountered are
recoverable.

Rust provides enums that
encapsulate data that may exist or
may cause a panic, which we can
handle appropriately.

ERRORS: NULL

Most programming languages have a
construct to place a null value to
denote the absence of a value. Using
a null value in a non-null context
leads to sometimes expensive errors!

Rust does not have a standalone null
value, but nullity can be handled
using the Option <T>enum.

ERRORS: OPTION ENUM

The Option <T>enum has two variants - Some (denoting presence) and
None (denoting absence). If the enum is of variant Some, then it will have

an associated data of type T.
[This enum is in the standard library.

enum Option<T> {
None,
Some (T) ,

let three boxed = Some (3);

ERRORS: OPTION ENUM

Because it is an enum, the match and 1 £ 1let constructs can be used
to handle the different variants. It also has some convenience functions to
handle only one or the other variant while panicking otherwise.

let next node = match next node {
Some (x) => X,
None => panic! (

I g

let next node v2Z2 = next node.unwrap();

ERRORS: OPTION UNWRAP

The unwrap () and related methods enable getting the value inside the
Some variant of an Option. Note that the plain unwrap () method can
definitely panic while the others may never do so.

let boxed num = Some(7);

let seven = boxed num.unwrap () ;

let boxed num v2: Option <u32> = None;

let a = boxed num vZ.unwrap or(42);

let b = boxed num v2Z2.unwrap or default();

ERRORS: OPTION LOGIC

Option has logical operation methods to operate against two Options.
Depending on the operation, the output will either be None or the second
operand.

let a .and (None) .unwrap or (0);
let b .or (None) .unwrap or (0);
let c .xor (None) .unwrap or(0);

let a v2 xor (Some (7)) .unwrap or (0);

ERRORS:
EXCEPTIONS

Recoverable errors are called
exceptions in most programming
languages. They are usually handled
using specialized syntax.

Rust does not have a specific
construct for exception handling
because the Result <T, E>enum
already encapsulates exceptions.

ERRORS: RESULT ENUM

The Result <T, E>enum has two variants - Ok (denoting successful
operation) and Err (denoting failed operation). The enum will have an
associated data of type T and E if the enum is of variant Ok and Err,
respectively.

This enum is in the standard library.

enum Result<T, E> {
Ok (T),
Err (E),

11

ERRORS: RESULT ENUM

Because it is an enum, the match
and if let constructs can be
used to handle the different
variants. It also has some
convenience functions to handle
only one or the other variant while
panicking otherwise.

Example

mut str in = String::new();

s = io::stdin ()

.read line(&mut str in);

ssize = match s {
Ok (x) => x,
Err() => panic! (

ssize v2 = s

.expect (

12

L

ERRORS: RESULT ENUM

If we want to handle specific errors, we can do a match on the error

object. For the example below, the data in the error variant has a method
kind () which determines what the nature of the error is.

use std::fs::File;

if let Err(err obj) = File::open(
match err obj.kind() {
Error Kind::NotFound => ({
println!(
1

other => {

panic! (

13

ERRORS: RESULT UNWRAP

The unwrap () and related methods enable getting the value inside the
Ok or Err variant of an Result. Note that the plain unwrap () method
can definitely panic while the others may never do so.

let boxed num = Ok(7);

let seven = boxed num.unwrap () ;

let boxed num v2 = Err(42);

let a = boxed num vZ.unwrap or(24);

let b = boxed num v2Z2.unwrap err();

ERRORS: RESULT LOGIC

Result has logical operation methods to operate against two Results.
Depending on the operation, the output will either be None or the second
operand.

Ok (7) .and (Exrxr (5)) ;
Err (7) .and (Ok (5)) ;

7) .or (Exrr (5)

) ;
Err(5) .or (Ok(7));
7)

Err (5) .or (Err () ;

15

ERRORS: PROPAGATION

There are cases when functions work on data that have the Result and
Option enums. They can opt to send the Exr or None variants to the
caller by using the ? syntax. The function is required to return a Result
enum.

use std::error::Error;

fn str_to _i64 () —-> Result <i64, Box <dyn Error>> ({
let mut str in = String::new();

1o::stdin() .read line(&mut str in)?;

Ok (str in.trim() .parse::<i64>()?)

16

ERRORS: PROPAGATION

Example

To catch all errors, the data type of
the Error variant should be Box
<dyn Error>.

use std::error::Error;

fn str to i64 () -> Option <i64> ({
let mut str in =S

Sometimes it makes more sense to . -
if let None =
return an Option instead. io::stdin().read line (amut str_in) .ok ()

return None;

}

str in.trim() .parse::<464> () .ok ()

17

' RESULT AND OPTION DUALITY

Since the Result and Option enums are very similar, there exist
. methods that can convert from one type to another.

let my vec = vec![1,

let a = my vec.get(3) .0k or(

let b: Option <Vec <u64>> = my vec.try into() .ok();

18

https://doc.rust-lang.org/stable/book

