
CoE 163
Computing Architectures and Algorithms

Matrix-Matrix Multiplication (part 2)

Recall our MMM “ijk” algorithm

for i = 1 to n
for j = 1 to n

for k = 1 to n
Cij = Cij+ Aik*Bkj

end for
end for

end for

Load row i of A into fast memory

Recall our MMM “ijk” algorithm

for i = 1 to n
for j = 1 to n

for k = 1 to n
Cij = Cij+ Aik*Bkj

end for
end for

end for

Load row i of A into fast memory

Load Cij into fast memory

Recall our MMM “ijk” algorithm

for i = 1 to n
for j = 1 to n

for k = 1 to n
Cij = Cij+ Aik*Bkj

end for
end for

end for

Load row i of A into fast memory

Load Cij into fast memory

Load column j of B into
fast memory

Recall our MMM “ijk” algorithm

for i = 1 to n
for j = 1 to n

for k = 1 to n
Cij = Cij+ Aik*Bkj

end for
end for

end for

Load row i of A into fast memory

Load Cij into fast memory

Load column j of B into
fast memory

Perform
operation

Recall our MMM “ijk” algorithm

for i = 1 to n
for j = 1 to n

for k = 1 to n
Cij = Cij+ Aik*Bkj

end for
end for

end for

Load row i of A into fast memory

Load Cij into fast memory

Load column j of B into
fast memory

Write Cij back to slow
memory

Perform
operation

Is there a way to make our MMM
algorithm more efficient in terms of
memory use?

First let’s analyze the performance of our
algorithm

Assumptions about computer archi

◦ 2 levels of memory: slow and fast
◦ Slow memory

◦ Assume column major
◦ Large enough to store 3 𝑛×𝑛 matrices, 𝐴, 𝐵, and 𝐶

◦ Fast memory
◦ Only contains 𝑀 words where 2𝑛 < 𝑀 ≪ 𝑛2

◦ Cannot contain an entire 𝑛×𝑛 matrix
◦ Can contain at least 2 matrix columns or rows

Slow memory can contain 2 rows of
A in fast memory
◦ Suppose n = 10, and M = 64
◦ Example shows 4-word cache

lines

Line number 4 words per cache line

x 𝑎!! 𝑎"! 𝑎#! 𝑎$!
x+1 𝑎%! 𝑎!& ! 𝑎!" 𝑎""
x+2 𝑎!# 𝑎"# 𝑎## 𝑎$ #
x+3 𝑎%# 𝑎!& # 𝑎!$ 𝑎"$
x+4 𝑎!' 𝑎"' 𝑎#' 𝑎$'
x+5 𝑎%' 𝑎!& ' 𝑎!(𝑎"(
x+6 𝑎!) 𝑎") 𝑎#) 𝑎$)
x+7 𝑎%) 𝑎!&) 𝑎!* 𝑎"*
x+8 𝑎!% 𝑎"% 𝑎#% 𝑎$%
x+9 𝑎%% 𝑎!& % 𝑎! !& 𝑎" !&
x+10

x+12

x+13

x+14

x+15

Fast memory with 64 words: greater than 2n, but
much less than n2

𝑎""
𝑎#"
𝑎$"
…

𝑎%"
𝑎&"
𝑎'"
𝑎"("

…
Matrix A stored column-
wise in slow memory

Total number of memory references?

◦ 𝑛2 : Move 𝑛 elements per row of A (𝑛×𝑛) into fast
memory, keep it there until no longer needed

◦ 𝑛3 : Move n elements per column of B (𝑛×𝑛), n
times (for each value of 𝑖)

◦ 2𝑛2 : Move each element of C into fast memory
until computation completes, then move back into
slow memory (2 transfers per element)

◦ Thus, this algorithm involves 𝟑𝒏𝟐+ 𝒏𝟑 memory
references

What does this say about the
performance?

Total number of memory references?

◦ 𝑛2 : Move 𝑛 elements per row of A (𝑛×𝑛) into fast
memory, keep it there until no longer needed

◦ 𝑛3 : Move n elements per column of B (𝑛×𝑛), n
times (for each value of 𝑖)

◦ 2𝑛2 : Move each element of C into fast memory
until computation completes, then move back into
slow memory (2 transfers per element)

◦ Thus, this algorithm involves 𝟑𝒏𝟐+ 𝒏𝟑 memory
references

Execution time grows approx. cubically
as 𝑛 increases

How efficient is the algorithm?

◦ 𝑓 - number of floating point operations
◦ 3 nested loops that iterate from 1 to 𝑛, 2 operations

at innermost loop, thus 𝒇 = 𝟐𝒏𝟑
◦ Let 𝑞 = ratio of 𝑓 to memory references
◦ 𝑞 = 2𝑛3/(3𝑛2 + 𝑛3)

◦ If n is very large, 𝒒 ≈ 𝟐 (try solving for 𝑞 when 𝑛 =
500)

◦ Approx only 2 operations per memory reference

Is there a way to improve this?

MMM algorithm with blocking

Costly: row traversal on row-major memory

◦ 2 columns of B involves data that are
close to each other – OK!

◦ Use up many cache lines for 2 rows
of A – NOT OK!

◦ MMM operation has inherent
problem:
◦ One matrix is traversed row-wise, the

other column-wise
◦ Whether memory is row- or column-

major, we do costly cache transfers

Line number 4 words per cache line

x 𝑎!! 𝑎"! 𝑎#! 𝑎$!
x+1 𝑎%! 𝑎!& ! 𝑎!" 𝑎""
x+2 𝑎!# 𝑎"# 𝑎## 𝑎$ #
x+3 𝑎%# 𝑎!& # 𝑎!$ 𝑎"$
x+4 𝑎!' 𝑎"' 𝑎#' 𝑎$'
x+5 𝑎%' 𝑎!& ' 𝑎!(𝑎"(
x+6 𝑎!) 𝑎") 𝑎#) 𝑎$)
x+7 𝑎%) 𝑎!&) 𝑎!* 𝑎"*
x+8 𝑎!% 𝑎"% 𝑎#% 𝑎$%
x+9 𝑎%% 𝑎!& % 𝑎! !& 𝑎" !&
x+10 𝑏!! 𝑏"! 𝑏#! 𝑏$!
x+12 𝑏'! 𝑏(! 𝑏)! 𝑏*!
x+13 𝑏%! 𝑏!& ! 𝑏!" 𝑏""
x+14 𝑏#" 𝑏$" 𝑏'" 𝑏("
x+15 𝑏)" 𝑏*" 𝑏%" 𝑏!& "

Fast memory with 64 words: greater than 2n, but
much less than n2

Costly: traversal with long strides

◦ Innermost loop of algorithm
uses an entire row of matrix
A and entire columns of
matrix B – Long strides

◦ Uses up many cache lines
for a few operations

◦ Shorter strides are often
better

Line number 4 words per cache line

x 𝑎!! 𝑎"! 𝑎#! 𝑎$!
x+1 𝑎%! 𝑎!& ! 𝑎!" 𝑎""
x+2 𝑎!# 𝑎"# 𝑎## 𝑎$ #
x+3 𝑎%# 𝑎!& # 𝑎!$ 𝑎"$
x+4 𝑎!' 𝑎"' 𝑎#' 𝑎$'
x+5 𝑎%' 𝑎!& ' 𝑎!(𝑎"(
x+6 𝑎!) 𝑎") 𝑎#) 𝑎$)
x+7 𝑎%) 𝑎!&) 𝑎!* 𝑎"*
x+8 𝑎!% 𝑎"% 𝑎#% 𝑎$%
x+9 𝑎%% 𝑎!& % 𝑎! !& 𝑎" !&
x+10 𝑏!! 𝑏"! 𝑏#! 𝑏$!
x+12 𝑏'! 𝑏(! 𝑏)! 𝑏*!
x+13 𝑏%! 𝑏!& ! 𝑏!" 𝑏""
x+14 𝑏#" 𝑏$" 𝑏'" 𝑏("
x+15 𝑏)" 𝑏*" 𝑏%" 𝑏!& "

Fast memory with 64 words: greater than 2n, but
much less than n2

Costly: traversal with long strides
Line number 4 words per cache line

x 𝑎!! 𝑎"! 𝑎#! 𝑎$!
x+1 𝑎%! 𝑎!& ! 𝑎!" 𝑎""
x+2 𝑎!# 𝑎"# 𝑎## 𝑎$ #
x+3 𝑎%# 𝑎!& # 𝑎!$ 𝑎"$
x+4 𝑎!' 𝑎"' 𝑎#' 𝑎$'
x+5 𝑎%' 𝑎!& ' 𝑎!(𝑎"(
x+6 𝑎!) 𝑎") 𝑎#) 𝑎$)
x+7 𝑎%) 𝑎!&) 𝑎!* 𝑎"*
x+8 𝑎!% 𝑎"% 𝑎#% 𝑎$%
x+9 𝑎%% 𝑎!& % 𝑎! !& 𝑎" !&
x+10 𝑏!! 𝑏"! 𝑏#! 𝑏$!
x+12 𝑏'! 𝑏(! 𝑏)! 𝑏*!
x+13 𝑏%! 𝑏!& ! 𝑏!" 𝑏""
x+14 𝑏#" 𝑏$" 𝑏'" 𝑏("
x+15 𝑏)" 𝑏*" 𝑏%" 𝑏!& "

Fast memory with 64 words: greater than 2n, but
much less than n2

Morpheus, from “The Matrix”

Let’s use blocking

◦ Let’s break 𝐶 into an 𝑁×𝑁 block matrix with
𝒏
𝑵
× 𝒏
𝑵

blocks
◦ 𝐶𝑖𝑗, and 𝐴 and 𝐵 are similarly partitioned
◦ Example below when N = 5 and 𝒏 = 𝟏𝟎

𝑪𝒊𝒋
𝐴𝑖𝑘

𝐵𝑘𝑗

+= ∗

◦ We break up the MMM
computation into smaller chunks

◦ Traverse with shorter strides
across our rows and columns

◦ Diagram shows 2x2 sub-blocks
for A, B, and C in cache

◦ We don’t waste so many cache
lines per operation!

Line number 4 words per cache line

x 𝑎!! 𝑎"! 𝑎#! 𝑎$!
x+1 𝑎%! 𝑎!& ! 𝑎!" 𝑎""
x+2 𝑏!! 𝑏"! 𝑏#! 𝑏$!
x+3 𝑏%! 𝑏!& ! 𝑏!" 𝑏""
x+4 𝐶!! 𝐶"! 𝐶#! 𝐶$!
x+5 𝐶%! 𝐶!& ! 𝐶!" 𝐶""
x+6

x+7

x+8

x+9

x+10

x+12

x+13

x+14

x+15

Fast memory with 64 words: greater than 2n, but
much less than n2

Blocking gives us shorter strides

𝐶"" 𝐶"#
𝐶#" 𝐶##

𝑎"" 𝑎"#
𝑎#" 𝑎##

𝑏"" 𝑏"#
𝑏#" 𝑏##

+= ∗

Our algorithm with blocking becomes:
for i = 1 to N

for j = 1 to N
for k = 1 to N

Cij = Cij + Aik · Bkj

end for
end for

end for

𝑪𝒊𝒋
𝐴𝑖𝑘

𝐵𝑘𝑗

+= ∗

Our algorithm with blocking becomes:
for i = 1 to N

for j = 1 to N
for k = 1 to N

Cij = Cij + Aik · Bkj

end for
end for

end for

𝑪𝒊𝒋
𝐴𝑖𝑘

𝐵𝑘𝑗

+= ∗

Matrix multiplication
of (2×2) block Aik
and (2×2) block Bkj

Our algorithm with blocking becomes:
for i = 1 to N

for j = 1 to N
for k = 1 to N

Cij = Cij + Aik · Bkj

end for
end for

end for

𝑪𝒊𝒋
𝐴𝑖𝑘

𝐵𝑘𝑗

+= ∗

Load Cij into fast memory

Our algorithm with blocking becomes:
for i = 1 to N

for j = 1 to N
for k = 1 to N

Cij = Cij + Aik · Bkj

end for
end for

end for

𝑪𝒊𝒋
𝐴𝑖𝑘

𝐵𝑘𝑗

+= ∗

Load Cij into fast memory
Load Aik and Bkj into fast memory

Our algorithm with blocking becomes:
for i = 1 to N

for j = 1 to N
for k = 1 to N

Cij = Cij + Aik · Bkj

end for
end for

end for

𝑪𝒊𝒋
𝐴𝑖𝑘

𝐵𝑘𝑗

+= ∗

Load Cij into fast memory
Load Aik and Bkj into fast memory

Perform
operation

Our algorithm with blocking becomes:
for i = 1 to N

for j = 1 to N
for k = 1 to N

Cij = Cij + Aik · Bkj

end for
end for

end for

𝑪𝒊𝒋
𝐴𝑖𝑘

𝐵𝑘𝑗

+= ∗

Load Cij into fast memory
Load Aik and Bkj into fast memory

Perform
operation

Write Cij back to slow memory

How many memory references if
blocking is used?
◦ Read each (#$×

#
$) block of A 𝑁3 times:

◦ 𝑁3('()() = 𝑵𝒏𝟐

◦ Read each (#$×
#
$) block of B 𝑁3 times:

◦ 𝑵𝒏𝟐

◦ Read and write each (+,×
+
,) block of C

once
◦ 𝑛2 (read) + 𝑛2 (write) = 2𝑛2

◦ Total: 2𝑛2 + 2𝑁𝑛2 = 2 + 2𝑁 𝑛% ≈ 𝟐𝑵𝒏𝟐
◦ 𝑁 is usually much larger than 2, so we get

approximately 𝟐𝑵𝒏𝟐 memory references
◦

How many memory references if
blocking is used?
◦ Read each (#$×

#
$) block of A 𝑁3 times:

◦ 𝑁3('()() = 𝑵𝒏𝟐

◦ Read each (#$×
#
$) block of B 𝑁3 times:

◦ 𝑵𝒏𝟐

◦ Read and write each (+,×
+
,) block of C

once
◦ 𝑛2 (read) + 𝑛2 (write) = 2𝑛2

◦ Total: 2𝑛2 + 2𝑁𝑛2 = 2 + 2𝑁 𝑛% ≈ 𝟐𝑵𝒏𝟐
◦ 𝑁 is usually much larger than 2, so we get

approximately 𝟐𝑵𝒏𝟐 memory references
◦

Given: 𝟐𝑵𝒏𝟐, how do we minimize
memory references?
◦ Choose as small as possible 𝑁 (ie larger blocks)
◦ Constraint for size of 𝑁:

◦ We should be able to fit one (#$×
#
$) block each

for A, B, and C simultaneously
◦ This lets us load into fast memory all the data

needed to iterate and perform operations at the
innermost loop for k=1 to n

◦ Thus, 𝑀 ≥ 3 '
(

%

◦ 𝑁 = 𝒏 𝟑
𝑴

How efficient is the blocked
algorithm?
◦ Memory references: 𝟐𝑵𝒏𝟐
◦ Number of floating point operations: 𝟐𝒏𝟑

◦ Select N to be approx 𝒏 𝟑
𝑴

◦ Thus we get:

◦ 𝑞 ≈ %''

%('(
≈ '

' '
)

≈)
*

How efficient is the blocked
algorithm?

◦ 𝑞 ≈ -
.

◦ 𝑂(𝑀)
◦ 𝑞 grows as 𝑀 grows: more efficient with larger

cache/fast memory
◦ Grows independently of 𝑛: fast for any matrix

size 𝑛×𝑛

Additional remarks on blocked
algorithm
◦ It can be shown that the algorithm is

asymptotically optimal
◦ Real code will have to handle asymmetric

matrices – optimal block size may not be
square

◦ Cache and register structure of machine will
affect the best shapes of submatrices

Try it yourself!
• Implement MMM with and without blocking
• Use large matrices (say, n=1000)
• Compare performance / runtimes

There are other ways to optimize
MMM
◦ Only a few methods are discussed in the

course (arrangement of loops, and blocking)
◦ Other methods are out there (Strassen

algorithm with 𝑂(𝒏𝟐.𝟖𝟎𝟕𝟑𝟓𝟓), Coppersmith–
Winograd algorithm with 𝑂(𝒏𝟐.𝟑𝟕𝟓𝟒𝟕𝟕))

◦ Often, optimizations make code harder to read
but improve cache behavior

Final words

◦ MMM is at the heart of many linear algebra
algorithms

◦ Achieving an optimized MMM will improve
performance of many applications

