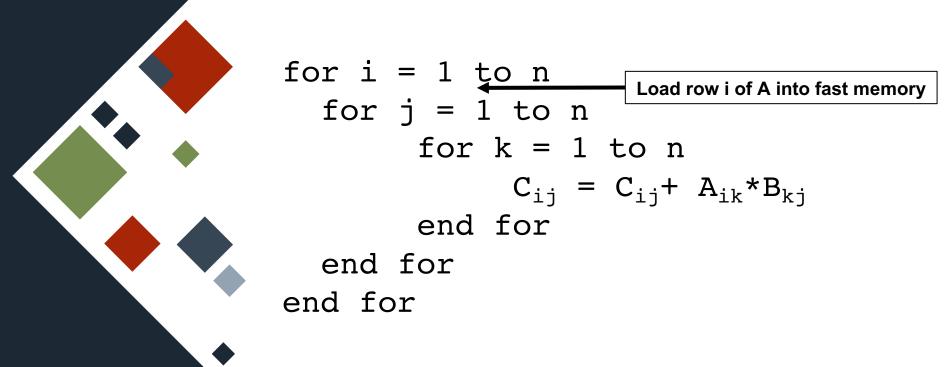
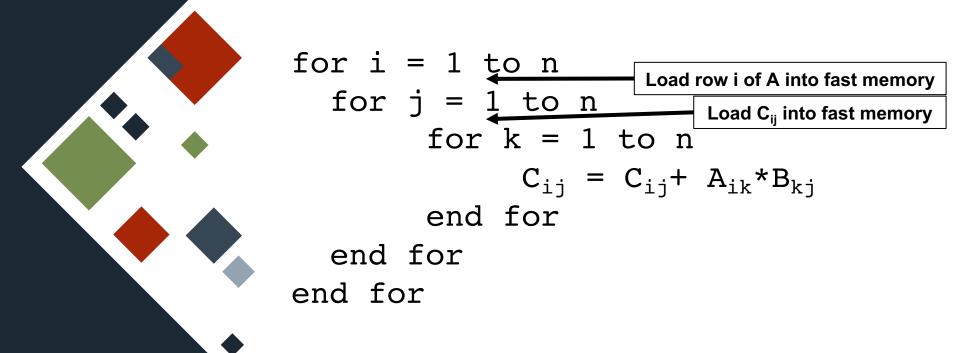


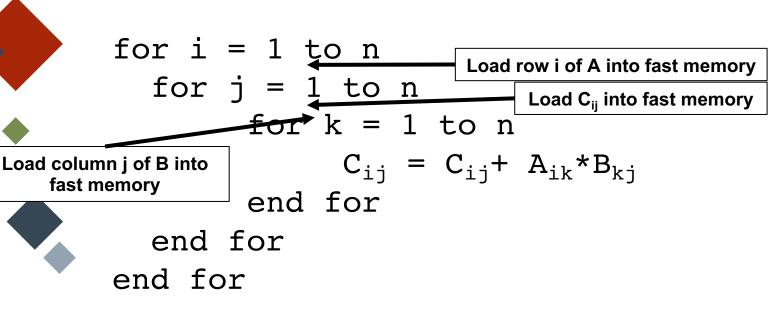
CoE 163

Computing Architectures and Algorithms

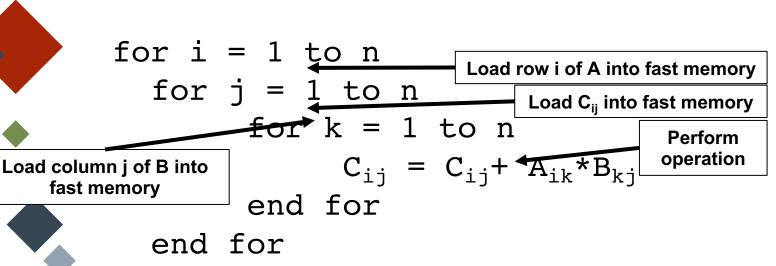
Matrix-Matrix Multiplication (part 2)

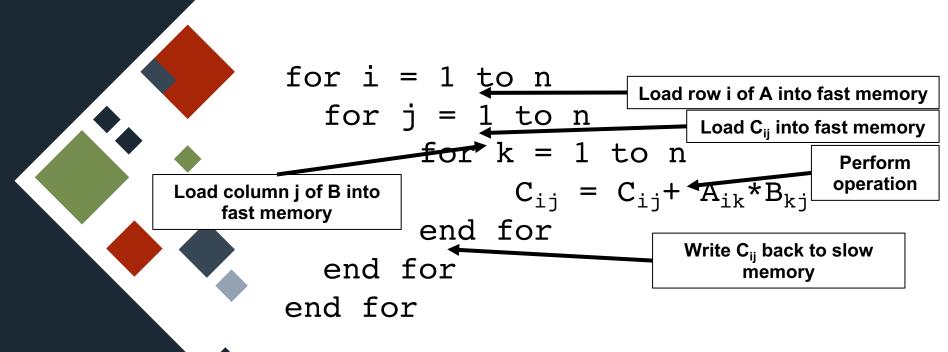


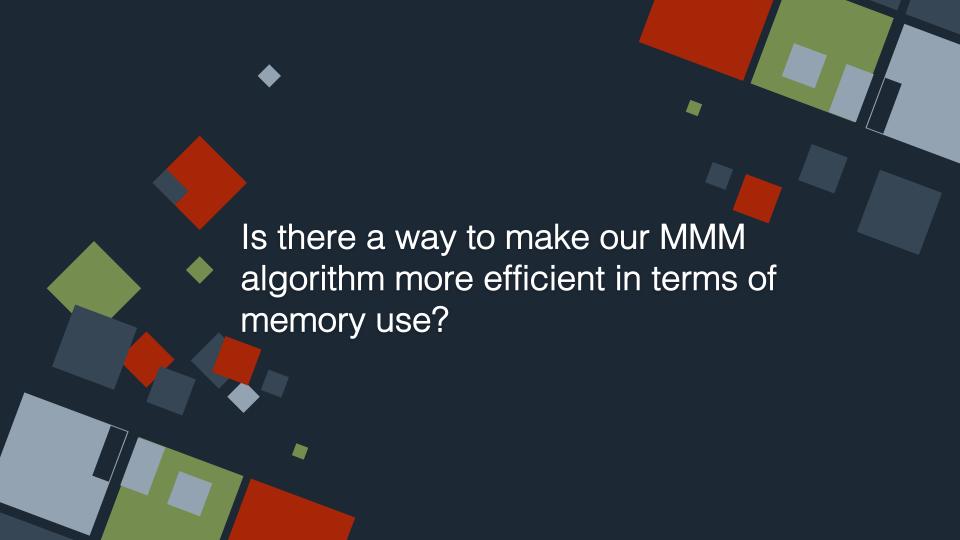


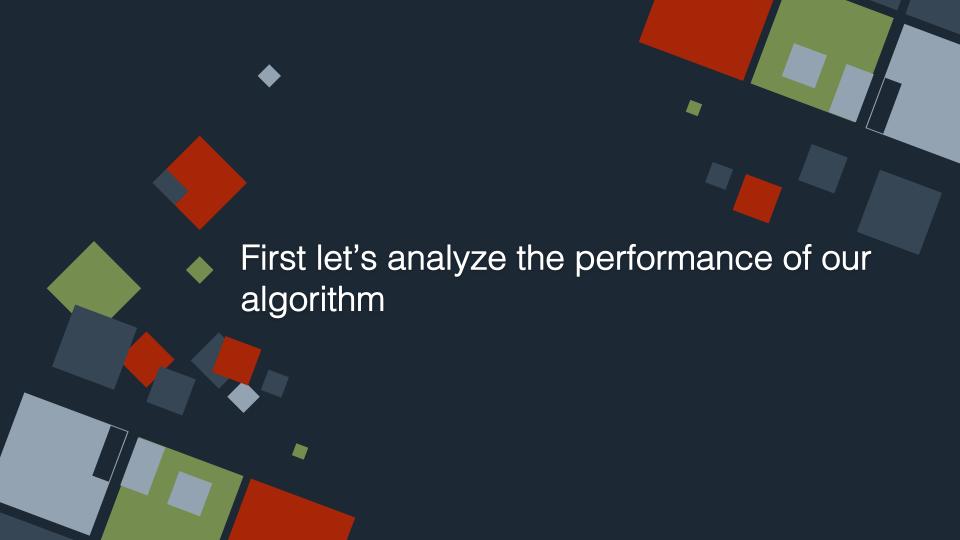


end for









- 2 levels of memory: slow and fast Slow memory
 - Assume column major
 - \circ Large enough to store 3 $n \times n$ matrices, A, B, and C
- **Fast memory**
 - Only contains M words where $2n < M \ll n^2$
 - Cannot contain an entire $n \times n$ matrix
 - Can contain at least 2 matrix columns or rows

Slow memory can contain 2 rows of

A in fast memory

Suppose n = 10, and M = 64

Example shows 4-word cache

lines

a_{11}
a_{21}
a_{31}
a_{71}
a_{81}
a_{91}
a _{10 1}

Matrix A stored columnwise in slow memory

Line number	4 words per cache line			
х	a_{11}	a_{21}	a_{31}	a_{41}
x+1	a_{91}	a _{10 1}	a_{12}	a_{22}
x+2	a_{13}	a ₂₃	a_{33}	a _{4 3}
x+3	a_{93}	a ₁₀₃	a_{14}	a_{24}
x+4	a_{15}	a_{25}	a_{35}	a_{45}
x+5	a_{95}	a _{10 5}	a_{16}	a_{26}
x+6	a_{17}	a ₂₇	a ₃₇	a ₄₇
x+7	a_{97}	a ₁₀₇	a ₁₈	a ₂₈
x+8	a_{19}	a ₂₉	a_{39}	a_{49}
x+9	a_{99}	a ₁₀₉	a _{1 10}	a _{2 10}
x+10				
x+12				
x+13				
x+14				
x+15				

 n^2 : Move n elements per row of A $(n \times n)$ into fast memory, keep it there until no longer needed

 n^3 : Move n elements per column of B $(n \times n)$, n times (for each value of i)

 $2n^2$: Move each element of C into fast memory until computation completes, then move back into slow memory (2 transfers per element)

Thus, this algorithm involves $3n^2 + n^3$ memory references

What does this say about the performance?

 n^2 : Move n elements per row of A $(n \times n)$ into fast memory, keep it there until no longer needed

 n^3 : Move n elements per column of B $(n \times n)$, n times (for each value of i)

 $2n^2$: Move each element of C into fast memory until computation completes, then move back into slow memory (2 transfers per element)

Thus, this algorithm involves $3n^2 + n^3$ memory references

Execution time grows approx. cubically as n increases



° 3 nested loops that iterate from 1 to n, 2 operations at innermost loop, thus $f = 2n^3$

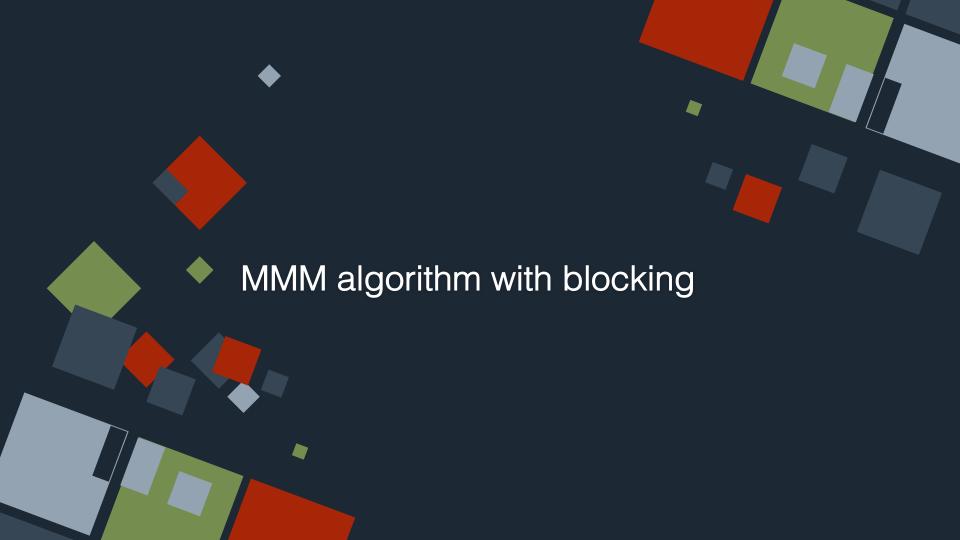
Let q = ratio of f to memory references

$$q = 2n^3/(3n^2 + n^3)$$

If n is very large, $q \approx 2$ (try solving for q when n = 500)

Approx only 2 operations per memory reference

Is there a way to improve this?



Costly: row traversal on row-major memory

2 columns of B involves data that are close to each other – OK!

Use up many cache lines for 2 rows of A – NOT OK!

MMM operation has inherent problem:

- One matrix is traversed row-wise, the other column-wise
- Whether memory is row- or columnmajor, we do costly cache transfers

Line number	4 words per cache line			
х	a_{11}	a_{21}	a ₃₁	a_{41}
x+1	a_{91}	a _{10 1}	a_{12}	a_{22}
x+2	a_{13}	a_{23}	a_{33}	a _{4 3}
x+3	a_{93}	a ₁₀₃	a_{14}	a_{24}
x+4	a_{15}	a ₂₅	a ₃₅	a_{45}
x+5	a_{95}	a _{10 5}	a_{16}	a ₂₆
x+6	a_{17}	a ₂₇	a ₃₇	a ₄₇
x+7	a_{97}	a ₁₀₇	a ₁₈	a ₂₈
x+8	a_{19}	a ₂₉	a_{39}	a ₄₉
x+9	a_{99}	a _{10 9}	a _{1 10}	a _{2 10}
x+10	b_{11}	b_{21}	b ₃₁	b_{41}
x+12	b ₅₁	b ₆₁	b ₇₁	b ₈₁
x+13	b ₉₁	b _{10 1}	b_{12}	b ₂₂
x+14	b ₃₂	b ₄₂	b ₅₂	b ₆₂
x+15	b ₇₂	b ₈₂	b ₉₂	b _{10 2}

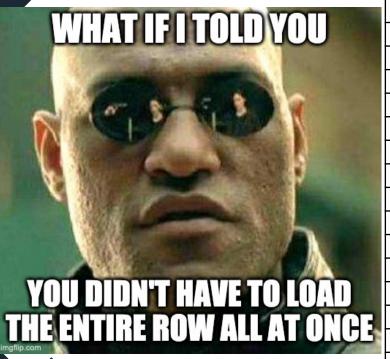
Costly: traversal with long *strides*

Innermost loop of algorithm uses an entire row of matrix A and entire columns of matrix B – Long strides Uses up many cache lines for a few operations

Shorter strides are often better

Line months of		1anda nan	aaalaa lina	
Line number	4 words per cache line			
х	a_{11}	a ₂₁	a ₃₁	a_{41}
x+1	a_{91}	a _{10 1}	a_{12}	a_{22}
x+2	a_{13}	a ₂₃	a ₃₃	a _{4 3}
x+3	a_{93}	a ₁₀₃	a_{14}	a_{24}
x+4	a_{15}	a_{25}	a_{35}	a_{45}
x+5	a_{95}	a _{10 5}	a_{16}	a_{26}
x+6	a_{17}	a ₂₇	a ₃₇	a ₄₇
x+7	a_{97}	a ₁₀₇	a_{18}	a_{28}
x+8	a ₁₉	a_{29}	a_{39}	a_{49}
x+9	a_{99}	a _{10 9}	<i>a</i> _{1 10}	a _{2 10}
x+10	b ₁₁	b ₂₁	b ₃₁	b_{41}
x+12	b ₅₁	b ₆₁	b ₇₁	b ₈₁
x+13	b ₉₁	b _{10 1}	b_{12}	b ₂₂
x+14	b ₃₂	b ₄₂	b ₅₂	b ₆₂
x+15	b ₇₂	b ₈₂	b_{92}	b _{10 2}

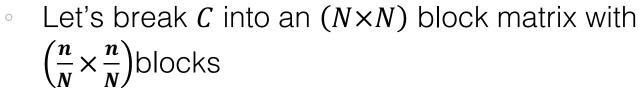
Costly: traversal with long *strides*



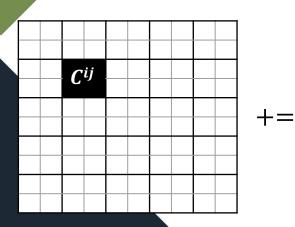
Line number	4 words per cache line			
х	a_{11}	a_{21}	a_{31}	a_{41}
x+1	a_{91}	a _{10 1}	a_{12}	a ₂₂
x+2	a_{13}	a ₂₃	a ₃₃	a _{4 3}
x+3	a_{93}	a ₁₀₃	a_{14}	a_{24}
x+4	a_{15}	a ₂₅	a ₃₅	a_{45}
x+5	a_{95}	<i>a</i> _{10 5}	a ₁₆	a ₂₆
x+6	a_{17}	a ₂₇	a ₃₇	a_{47}
x+7	a_{97}	a ₁₀₇	a ₁₈	a_{28}
x+8	a_{19}	a ₂₉	a ₃₉	a_{49}
x+9	a_{99}	a ₁₀₉	<i>a</i> _{1 10}	a _{2 10}
x+10	b_{11}	b ₂₁	b ₃₁	b_{41}
x+12	b ₅₁	b ₆₁	b ₇₁	b ₈₁
x+13	b ₉₁	b _{10 1}	b_{12}	b ₂₂
x+14	b ₃₂	b ₄₂	b ₅₂	b ₆₂
x+15	b_{72}	b ₈₂	b_{92}	b _{10.2}

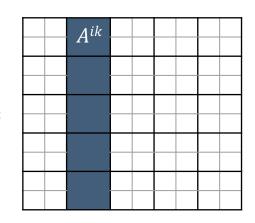
Morpheus, from "The Matrix"

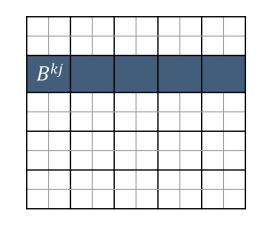
Let's use blocking



- C^{ij} , and A and B are similarly partitioned
- Example below when N = 5 and n = 10







Blocking gives us shorter strides

 b_{12}

 b_{22}

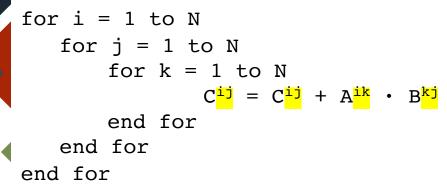
Line number

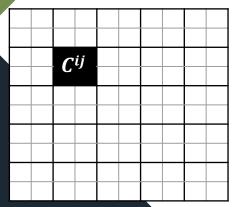
- We break up the MMM computation into smaller chunks
- Traverse with shorter strides across our rows and columns
- Diagram shows 2x2 sub-blocks for A, B, and C in cache
- We don't waste so many cache lines per operation!

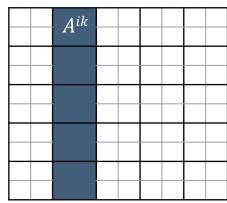
C ₁₁	C_{12}		a_{11}	a_{12}	
C_{21}	C_{22}	+=	a_{21}	a_{22}	*

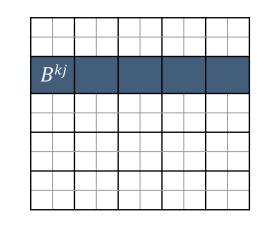
Line namber	4 Words per Cache line			
х	a_{11}	a_{21}	a_{31}	a_{41}
x+1	a_{91}	a _{10 1}	a_{12}	a_{22}
x+2	b_{11}	b ₂₁	b ₃₁	b ₄₁
x+3	b ₉₁	b _{10 1}	b_{12}	b ₂₂
x+4	C_{11}	C_{21}	C ₃₁	C ₄₁
x+5	C_{91}	C _{10 1}	C ₁₂	C_{22}
x+6				
x+7				
x+8				
x+9				
x+10				
x+12				
x+13				
x+14				
x+15				

4 words per cache line

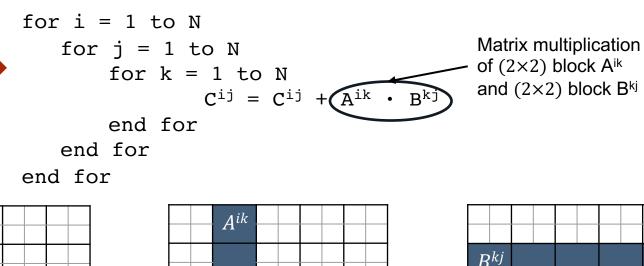


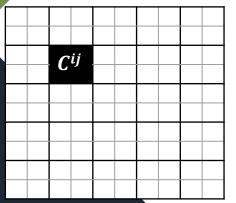




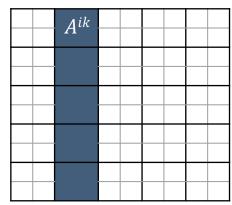


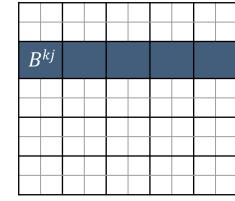
*



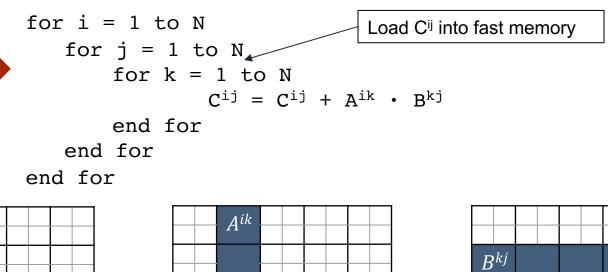


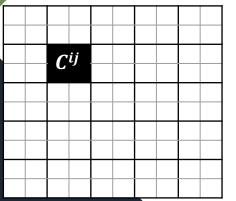
+=



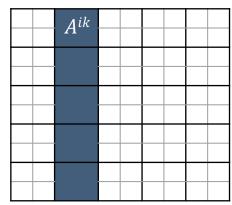


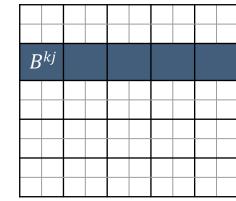
*



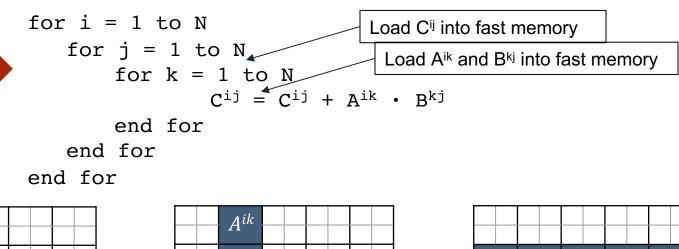


+=

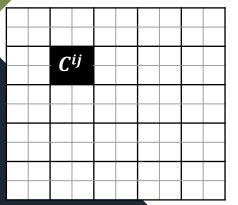




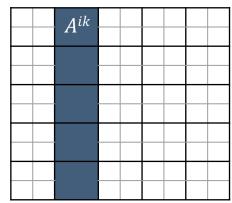
*

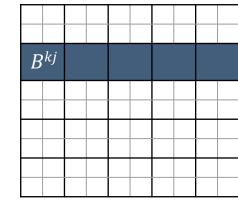


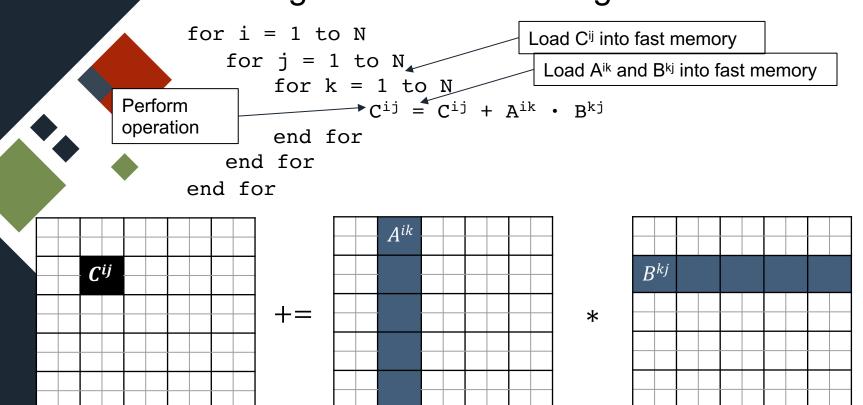
*

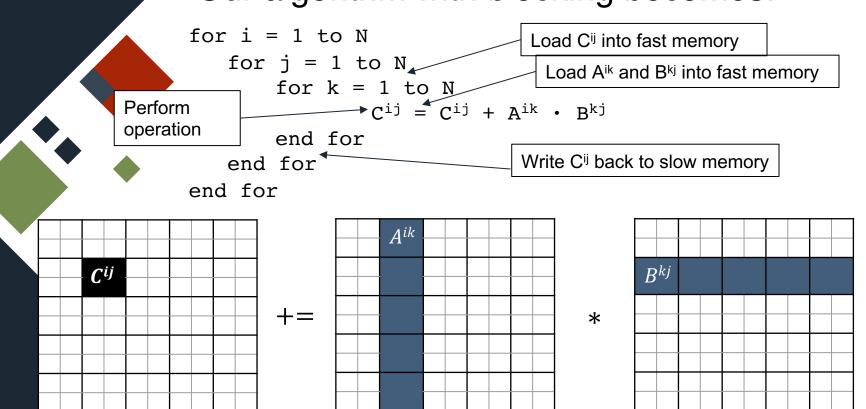


+=









Read each $(\frac{n}{N} \times \frac{n}{N})$ block of A N^3 times:

$$\circ N^3(\frac{n^2}{N^2}) = Nn^2$$

Read each $(\frac{n}{N} \times \frac{n}{N})$ block of B N^3 times:

 \circ Nn^2

Read and write each $(\frac{n}{N} \times \frac{n}{N})$ block of C once

$$n^2$$
 (read) + n^2 (write) = $2n^2$

Total:
$$2n^2 + 2Nn^2 = (2 + 2N)n^2 \approx 2Nn^2$$

 $^{\circ}$ N is usually much larger than 2, so we get approximately $2Nn^2$ memory references

Read each $(\frac{n}{N} \times \frac{n}{N})$ block of A N^3 times:

$$\circ N^3(\frac{n^2}{N^2}) = Nn^2$$

Read each $(\frac{n}{N} \times \frac{n}{N})$ block of B N^3 times:

 \circ Nn^2

Read and write each $(\frac{n}{N} \times \frac{n}{N})$ block of C once

$$n^2$$
 (read) + n^2 (write) = $2n^2$

Total: $2n^2 + 2Nn^2 = (2 + 2N)n^2 \approx 2Nn^2$

 $^{\circ}$ *N* is usually much larger than 2, so we get approximately $2Nn^2$ memory references

Given: $2Nn^2$, how do we minimize memory references?

- Choose as small as possible N (ie larger blocks)
- Constraint for size of *N*:
 - We should be able to fit one $(\frac{n}{N} \times \frac{n}{N})$ block each for A, B, and C simultaneously
 - This lets us load into fast memory all the data needed to iterate and perform operations at the innermost loop for k=1 to n

• Thus,
$$M \ge 3\left(\frac{n}{N}\right)^2$$

•
$$N = n \sqrt{\frac{3}{M}}$$

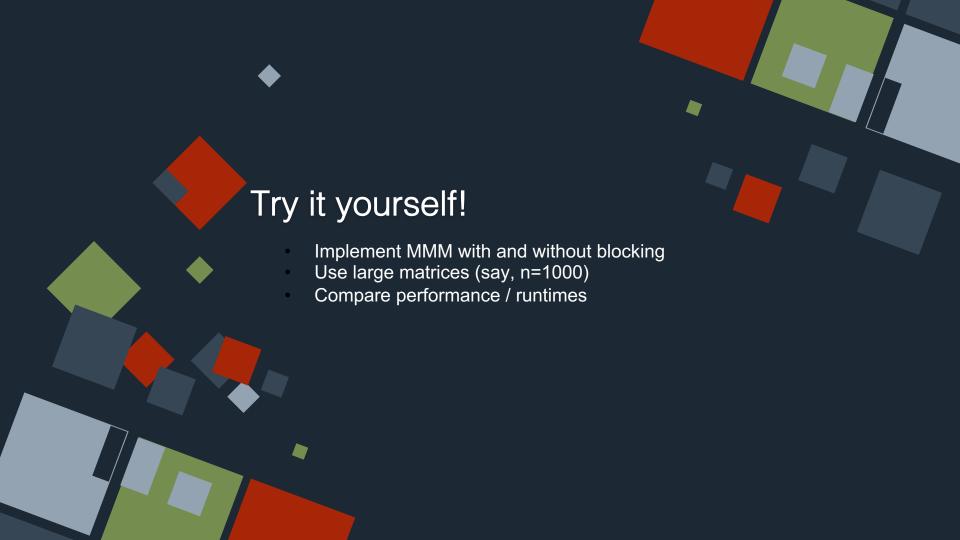
- Memory references: $2Nn^2$
- Number of floating point operations: $2n^3$
- Select N to be approx $n\sqrt{\frac{3}{M}}$
- Thus we get:

How efficient is the blocked algorithm?

$$q \approx \sqrt{\frac{M}{3}}$$

- \circ $O(\sqrt{M})$
- q grows as M grows: more efficient with larger cache/fast memory
- Grows independently of n: fast for any matrix size $n \times n$

- It can be shown that the algorithm is asymptotically optimal
- Real code will have to handle asymmetric matrices – optimal block size may not be square
- Cache and register structure of machine will affect the best shapes of submatrices



- Only a few methods are discussed in the course (arrangement of loops, and blocking)
- Other methods are out there (Strassen algorithm with $O(n^{2.807355})$, Coppersmith—Winograd algorithm with $O(n^{2.375477})$)
 - Often, optimizations make code harder to read but improve cache behavior

- MMM is at the heart of many linear algebra algorithms
- Achieving an optimized MMM will improve performance of many applications