
CoE 164
Computing Platforms

12a: Rust Concurrency

2

SEQUENTIAL
PROGRAMMING
So far, you have been taught that
each line of your code is
executed sequentially. It’s like a
series of commands the
computer just executes one after
another.

3

SEQUENTIAL PROGRAMMING

fn main() {
 let x[i64 ;3] = [1, 6, 4];
 println!("{}", x[0] + x[1] + x[2]);
}

S
ta

rt

Create x[3]

Push 1

Push 6

Push 4

Set return
value to 0

Add 1

Add 6

Add 4 En
d

BEYOND SEQUENTIAL
PROGRAMMING

It takes time to execute a long list of
instructions especially if there is only
a single CPU working on it!

What if we split our instructions such
that we can execute them faster?

If we are limited to only one CPU, is
there a way that we can maximize
the time it runs our instructions?

PARALLEL
PROGRAMMING
In comparison to sequential
programming, parallel programming
uses multiple computing modules to
solve a problem.

It saves time because it can now
execute tasks at the same time -
multitasking!

It enables concurrency!

6

Parallelism

◦ Execute instructions at the
same time

◦ Split tasks and run them
simultaneously

CONCURRENCY AND
PARALLELISM

Concurrency

◦ Execute and suspend
instructions

◦ Split tasks and run them
according to schedule

PROCESSES AND
THREADS
An executed program's code is
run in a process. Multiple
subprograms that run
independently called threads can
be spawned by the program.

Exam
ple

THREADS

A program can spawn a thread using the thread::spawn function with
its only argument being the closure containing the subroutine to run in the
thread.

Note that the calling program is also a thread on its own.

use std::thread;

thread::spawn(|| {

 println!("hello from thread!");
});

9

THREADS: SAMPLE CODE

use std::thread;
use std::time::Duration;

fn main() {
 thread::spawn(|| {
 for i in 1..=10 {
 println!("<spwn_t> {}!" , i);
 thread::sleep(Duration::from_millis(1));
 }
 });

 for i in 1..=5 {
 println!("<main_t> {}!" , i);
 thread::sleep(Duration::from_millis(1));
 }
}

Example

ExampleRunning the code snippet
previously will display interleaved
prints from both the main and
spawned threads similar to the one
on the right.

This happens because the two
threads run independently.

If the main thread finishes
executing, all of its spawned
threads are also terminated.

THREADS: SAMPLE CODE

<spwn_t> 1!

<main_t> 1!

<spwn_t> 2!

<spwn_t> 3!

<main_t> 2!

<spwn_t> 4!

<spwn_t> 5!

<main_t> 3!

<main_t> 4!

<main_t> 5!

<spwn_t> 6!

Exam
ple

THREADS: JOINING

The thread::spawn function returns a JoinHandle. We can use it to
force the main thread to wait for the thread to finish executing before
moving on.

Note that the main thread blocks while joining.

The thread panicked if the JoinHandle returns an Err.

let t = thread::spawn(|| {
 println!("hello from thread!");
});

if let Err(e) = t.join() {
 println!("Error during wait!");
}

Example

THREADS: DATA

In Rust, only one thread should
have a copy of a piece of data. To
transfer ownership of data to a
spawned thread, the move
keyword should be added before
the closure.

let v = vec![1, 6, 4];

let h = thread::spawn(move || {

 println!("vec [{:?}]", v);

});

// Compile error below
println!("vec [{:?}]", v);

THREAD
COMMUNICATION
There are times when we need
threads to share or transfer data.
During this time, both threads
need to be synchronized.

Rust usually treats thread
synchronization in terms of
process interaction.

PROCESS
INTERACTION
Programs can be further divided
into different categories:

● Message passing
○ Like postal mail

● Shared space
○ Like bulletin boards

Exam
ple

MESSAGE PASSING

The std::sync::mpsc library provides for creation and management of a
multiple-producer single-consumer channel where threads can send and
receive data.

The channel() function returns a tuple with the "transmitter" and "receiver",
respectively. Channels can only send and receive data of a specific type.

use std::sync::mpsc;

let my_str = String::from("hello!");
let (tx, rx) = mpsc::channel();
tx.send(my_str).unwrap();

16

MESSAGE PASSING: SAMPLE CODE

use std::thread;
use std::sync::mpsc;

fn main() {
 let (tx, rx) = mpsc::channel();

 thread::spawn(move || {
 let val = String::from("hello!");
 tx.send(val).unwrap();
 });

 if let Ok(x) = rx.recv() {
 println!("Received \"{x}\" from child thread!");
 }
}

Example

Example

MESSAGE PASSING: SAMPLE CODE

Running the sample code will let
the spawned thread send a string
to the main thread.

Note that data is moved once it is
sent through a channel.

thread::spawn(move || {
 let val = String::from(
 "Hello!"
);
 tx.send(val).unwrap();

 // compile error!
 println!("{}", val);
});

Example

MESSAGE PASSING: MULTIPLE
PRODUCERS
Multiple threads can "share" a
single transmitter by cloning it and
transferring each clone to their
respective threads.

Additionally, we can receive all
possible data from the channel by
iterating through the receiver. The
loop stops if the channel is closed.

The order of the data received is
arbitrary.

let (tx, rx) = mpsc::channel();

let tx1 = tx.clone();
thread::spawn(move || {
 let val = String::from("1!");
 tx1.send(val).unwrap();
});

thread::spawn(move || {
 let val = String::from("2!");
 tx.send(val).unwrap();
});

for each_recv in rx {
 println!("> {}", each_recv);
}

Exam
ple

SHARED SPACE: MUTEX

The std::sync::Mutex struct hides a data under a mutual exclusion
(mutex) lock. The lock() blocking method should be called to "unwrap" the
data it is hiding. Data inside a mutex lock can be edited when a lock has been
acquired.

Sometimes, a mutex should be dropped manually after use using to drop()
function to unlock it.

use std::sync::Mutex;

let my_str = Mutex::new(String::from("hello!"));

if let Ok(mut d) = my_str.lock() {
 *d = String::from("world!");
}

Exam
ple

SHARED SPACE: MUTEX

Mutexes are more useful when used across several threads. For this more
common case, the mutex should be wrapped inside an atomically referenced
counted (Arc) smart pointer.

An Arc-wrapped mutex should be cloned before sending it to a thread that will
use that mutex. The Arc pointer will automatically count how many threads use
the mutex.

use std::sync::{Arc, Mutex};

let my_str = Arc::new(Mutex::new(String::from("hello!")));

if let Ok(mut d) = my_str.lock() {
 *d = String::from("world!");
}

21

SHARED SPACE: SAMPLE CODE

use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;

fn main() {
 let count_lock = Arc::new(Mutex::new(0));

 for _ in 0..10 {
 let count_lock_a = Arc::clone(&count_lock);
 thread::spawn(move || {
 if let Ok(mut i) = count_lock_a.lock() {
 *i += 1;
 println!("Count: {i}");
 }

Example

22

SHARED SPACE: SAMPLE CODE

 thread::sleep(Duration::from_millis(10));
 });
 }

 while let Ok(i) = count_lock.lock() {
 if *i >= 10 {
 println!("Final count: {i}");
 break;
 }
 }
}

Example

ExampleRunning the code snippet
previously will display prints from all
of the 10 spawned threads in
ascending order plus the main
thread. Each thread adds one to a
shared counter locked behind a
mutex.

SHARED SPACE: SAMPLE CODE

Count: 1

Count: 2

Count: 3

Count: 4

Count: 5

Count: 6

Count: 7

Count: 8

Count: 9

Count: 10

Final Count: 10

SHARED SPACE:
POISONED MUTEX
A mutex is poisoned if one of the
threads holding it panics. In this case,
other threads waiting for the mutex to
be open will throw an Err instead and
will not be able to access the data in it.
A poisoned mutex may mean that some
invariant in the program is not held.

Data in a poisoned mutex may still be
accessed, but one should be reminded
that the data may be in an unexpected
state.

THREAD SAFETY

Due to the nature of threads,
some problems can arise while
using them.

◦ Race conditions
◦ Deadlocks
◦ Unreproducible bugs

Rust subjects threads under the
same ownership rules as data. This
solves the most common problems
regarding threading.

The following traits are applied to
data that can be sent or received
across threads

◦ Send
◦ Sync

THREAD SAFETY

27

Send

◦ Ownership can be
transferred across threads

◦ Almost all Rust data types
have this trait

SEND AND SYNC TRAITS

Sync

◦ Reference can be transferred
across threads

◦ Multiple threads can safely
reference the data

28

RESOURCES

◦ The Rust Book

https://doc.rust-lang.org/stable/book

CoE 164
Computing Platforms

12a: Rust Concurrency

