CoE 163

Computing Architectures and Algorithms

Sparse Matrices

What are sparse matrices?

- o Matrices with large number of zero entries
- \circ If there are enough zeros, it might be worth using an algorithm that avoids:
	- o Storing zero entries
	- o Operating on zero entries

How should our algorithm deal with sparse matrices?

- o Many sparse methods available
- \circ Choosing the best one often requires substantial knowledge about the matrix
- We shall focus on basic issues in sparse Gaussian elimination
- o Supplementary references and exercises you can try on MATLAB are provided

Examples of Sparse Matrices and Issues to Consider

 \circ An arrow matrix forms an arrow with its nonzero entries o Consider the example below:

$$
A = \begin{bmatrix} 1 & & & & .1 \\ & 1 & & & .1 \\ & & 1 & & .1 \\ & & & 1 & .1 \\ 1 & .1 & .1 & .1 & 1 \end{bmatrix}
$$

o [The zero entries have been left blank] o What happens when we perform LU factorization? (try to solve it yourself manually—or use software)

 \circ $A =$ 1 1 1 .1 .1 .1 .1 .1 .1 1 .1 .1 1 $= L \cdot U$ $L \cdot U =$ 1 1 1 .1 .1 .1 1 .1 1 $\ddot{}$ 1 1 1 .1 .1 .1 1 .1 .96

 = \$ = 1 1 1 .1 .1 .1 1 .1 1 \$ 1 1 1 .1 .1 .1 1 .1 .96

- \circ None of the zero entries of A were filled in
- L and U together can be stored in (overwrite) the nonzero entries of \overline{A}
- o Total *essential* arithmetic operations (exclude adding or multiplying by zero): only 12
	- o 4 divisions for last row of L
	- o 8 multiplications and additions to compute the bottom rightmost entry (0.96 in the example)

- \circ LU factorization on a typical (not sparse) n-by-n matrix: o Need n2 locations to store matrix
	- $\frac{2}{2}$ $\frac{2}{3}n^3$ floating point operations
- \circ LU factorization on an n-by-n arrow matrix:
	- o Only need $3n 2$ locations to store matrix
	- \circ 3n 3 floating point operations
- \circ When *n* is large, space required and number of operations is tiny compared to dense LU factorization

What if we reversed the order of columns and rows?

 \circ Suppose we instead had A' shown below. What happens when we do LU factorization?

$$
A' = \begin{bmatrix} 1 & .1 & .1 & .1 & .1 \\ .1 & 1 & & & \\ .1 & & 1 & & \\ .1 & & & 1 & \\ .1 & & & & 1 \end{bmatrix}
$$

L' and U' have filled completely!

$$
A' = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & & \\ 1 & & 1 & \\ 1 & & & 1 \end{bmatrix} = L' \cdot U'
$$

$$
L' \cdot U' = \begin{bmatrix} 1 & 1 & & \\ 1 & 1 & & \\ 1 & -01 & 1 & \\ 1 & -01 & -01 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}
$$

.99

.1 −.01 −.01 $-.01$ 1

Need to use dense Gaussian elimination

 \circ Need n^2 locations to store L' and U'

 \circ Same amount of work as dense Gaussian elimination, $\frac{2}{3}n^3$

Order of rows and columns is extremely important!

How do we choose optimal permutations of rows and columns?

- We have seen that we can minimize storage if the correct order of rows/columns is used
- o However, choosing the optimal order or permutations of rows and columns is extremely hard (NP-complete!)
	- o All known algorithms to find optimal permutation grows exponentially with n
	- o We need to settle for using heuristics (more practical/experimental way of problem-solving, but may not be most optimal)

Rough strategy for optimizing Factorization of Sparse Matrices

- Design/choose a data structure that holds only nonzero entries of A
- 2. Design/choose data structure to accommodate new entries of L and U that fill in during elimination
	- o Option 1: Data grows dynamically
	- Option 2: Pre-compute size w/o actually performing elimination (computation must not be costly)
- 3. Use the data structure to perform only minimum number of floating point operations

Learn by Benchmarking!

- o Check out this MATLAB example: https://www.mathworks.com/help/matlab/math/sp matrix-reordering.html
- \circ Follow the discussion and try to run the sample \circ MATLAB Online (your up.edu.ph webmail accour should have access)

Open in MATLAB Online **View MATLAB Command**

 \circ If you need a tutorial on Cholesky decomposition, the youtube link provided on UVLe

Software for Sparse Matrix Operations

o MATLAB:

- o Operations on sparse matrices return sparse matrices; operations on full matrices return full matrices o MATLAB only stores nonzero entries of sparse matrices
- o Has built in functions for sparse matrix creation and manipulation **Functions**

https://www.mathworks.com/help/matlab/sparse-matrices.html

Software for Sparse Matrix Operations

- o Other public domain and commercial sparse matrix software are available
- o Active research area; difficult to recommend a single best algorithm

Software for Sparse Matrix Operations

Software to solve sparse linear systems, taken from Applied Numerical Linear Algebra by James W. Demmel

Key Takeaways

- o Sparse matrices provide computational advantages:
	- o Memory management: minimize required memory locations by storing only nonzero elements
	- o Computational efficiency: only perform *essential* operations, i.e. do not perform multiplications and additions by 0, for example
- Choosing the best algorithm/software is not straightforward
	- o Need substantial knowledge of the matrix to know the optimal data structure and algorithm
	- o No "one-size-fits-all" solution