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Sparse Matrices



What are sparse matrices?

o Matrices with large number of zero entries
o If there are enough zeros, it might be worth using an 

algorithm that avoids:
o Storing zero entries
o Operating on zero entries



How should our algorithm deal with 
sparse matrices?
o Many sparse methods available
o Choosing the best one often requires substantial 

knowledge about the matrix
o We shall focus on basic issues in sparse Gaussian 

elimination
o Supplementary references and exercises you can try on

MATLAB are provided



Examples of Sparse Matrices
and Issues to Consider



LU Factorization of an Arrow Matrix

o An arrow matrix forms an arrow with its nonzero entries
o Consider the example below:
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o [The zero entries have been left blank]
o What happens when we perform LU factorization? (try to 

solve it yourself manually—or use software)



LU Factorization of an Arrow Matrix

o 𝐴 =
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LU Factorization of an Arrow Matrix

𝐴 = 𝐿 $ 𝑈 =
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o None of the zero entries of 𝐴 were filled in
o 𝐿 and 𝑈 together can be stored in (overwrite) the nonzero 

entries of 𝐴
o Total essential arithmetic operations (exclude adding or

multiplying by zero): only 12
o 4 divisions for last row of L
o 8 multiplications and additions to compute the bottom 

rightmost entry (0.96 in the example)



LU Factorization of an Arrow Matrix

o LU factorization on a typical (not sparse) n-by-n matrix:
o Need n2 locations to store matrix
o

!
"
𝑛3 floating point operations

o LU factorization on an n-by-n arrow matrix:
o Only need 3𝑛 − 2 locations to store matrix
o 3𝑛 − 3 floating point operations

o When 𝑛 is large, space required and number of 
operations is tiny compared to dense LU 
factorization



What if we reversed the order of 
columns and rows?
o Suppose we instead had 𝐴’ shown below. What happens

when we do LU factorization?
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L’ and U’ have filled completely!
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Need to use dense Gaussian 
elimination
𝐿" $ 𝑈"
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o Need 𝒏𝟐 locations to store 𝐿’ and 𝑈’
o Same amount of work as dense Gaussian elimination, 𝟐

𝟑
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Order of rows and columns is extremely 
important!



How do we choose optimal 
permutations of rows and columns?
o We have seen that we can minimize storage if the 

correct order of rows/columns is used
o However, choosing the optimal order or permutations of 

rows and columns is extremely hard (NP-complete!)
o All known algorithms to find optimal permutation 

grows exponentially with 𝑛
o We need to settle for using heuristics (more

practical/experimental way of problem-solving, but
may not be most optimal)



Rough strategy for optimizing
Factorization of Sparse Matrices

1. Design/choose a data structure that holds only nonzero 
entries of A

2. Design/choose data structure to accommodate new 
entries of L and U that fill in during elimination
o Option 1: Data grows dynamically
o Option 2: Pre-compute size w/o actually performing

elimination (computation must not be costly)
3. Use the data structure to perform only minimum number 

of floating point operations



Learn by Benchmarking!

o Check out this MATLAB example: 
https://www.mathworks.com/help/matlab/math/sparse-
matrix-reordering.html

o Follow the discussion and try to run the sample codes on 
MATLAB Online (your up.edu.ph webmail account 
should have access)

o If you need a tutorial on Cholesky decomposition, see 
the youtube link provided on UVLe

https://www.mathworks.com/help/matlab/math/sparse-matrix-reordering.html


Software for Sparse Matrix Operations

o MATLAB:
o Operations on sparse matrices return sparse matrices; 

operations on full matrices return full matrices
o MATLAB only stores nonzero entries of sparse 

matrices
o Has built in functions for sparse matrix creation and 

manipulation

https://www.mathworks.com/help/matlab/sparse-matrices.html



Software for Sparse Matrix Operations

o Other public domain and commercial sparse matrix 
software are available

o Active research area; difficult to recommend a single
best algorithm



Software for Sparse Matrix Operations

Software to solve sparse linear systems, taken from Applied Numerical Linear Algebra by James W. Demmel



Key Takeaways

o Sparse matrices provide computational advantages:
o Memory management: minimize required memory

locations by storing only nonzero elements
o Computational efficiency: only perform essential 

operations, i.e. do not perform multiplications and 
additions by 0, for example

o Choosing the best algorithm/software is not 
straightforward
o Need substantial knowledge of the matrix to know the

optimal data structure and algorithm
o No “one-size-fits-all” solution


