
CoE 163
Computing Architectures and Algorithms

Sparse Matrices

What are sparse matrices?

o Matrices with large number of zero entries
o If there are enough zeros, it might be worth using an

algorithm that avoids:
o Storing zero entries
o Operating on zero entries

How should our algorithm deal with
sparse matrices?
o Many sparse methods available
o Choosing the best one often requires substantial

knowledge about the matrix
o We shall focus on basic issues in sparse Gaussian

elimination
o Supplementary references and exercises you can try on

MATLAB are provided

Examples of Sparse Matrices
and Issues to Consider

LU Factorization of an Arrow Matrix

o An arrow matrix forms an arrow with its nonzero entries
o Consider the example below:

𝑨 =

𝟏
𝟏

𝟏

. 𝟏

. 𝟏

. 𝟏

. 𝟏 . 𝟏 . 𝟏
𝟏 . 𝟏
. 𝟏 𝟏

o [The zero entries have been left blank]
o What happens when we perform LU factorization? (try to

solve it yourself manually—or use software)

LU Factorization of an Arrow Matrix

o 𝐴 =

1
1

1

.1

.1

.1

.1 .1 .1
1 .1
.1 1

= 𝐿 (𝑈

𝐿 (𝑈 =

1
1

1

.1 .1 .1
1
.1 1

(

1
1

1

.1

.1

.1
1 .1

.96

LU Factorization of an Arrow Matrix

𝐴 = 𝐿 $ 𝑈 =

1
1

1

.1 .1 .1
1
.1 1

$

1
1

1

.1

.1

.1
1 .1

.96

o None of the zero entries of 𝐴 were filled in
o 𝐿 and 𝑈 together can be stored in (overwrite) the nonzero

entries of 𝐴
o Total essential arithmetic operations (exclude adding or

multiplying by zero): only 12
o 4 divisions for last row of L
o 8 multiplications and additions to compute the bottom

rightmost entry (0.96 in the example)

LU Factorization of an Arrow Matrix

o LU factorization on a typical (not sparse) n-by-n matrix:
o Need n2 locations to store matrix
o

!
"
𝑛3 floating point operations

o LU factorization on an n-by-n arrow matrix:
o Only need 3𝑛 − 2 locations to store matrix
o 3𝑛 − 3 floating point operations

o When 𝑛 is large, space required and number of
operations is tiny compared to dense LU
factorization

What if we reversed the order of
columns and rows?
o Suppose we instead had 𝐴’ shown below. What happens

when we do LU factorization?

𝑨# =

𝟏 . 𝟏 . 𝟏
. 𝟏 𝟏
. 𝟏 𝟏

. 𝟏 . 𝟏

. 𝟏

. 𝟏
𝟏

𝟏

L’ and U’ have filled completely!

𝐴# =

1 .1 .1
.1 1
.1 1

.1 .1

.1

.1
1

1

= 𝐿# (𝑈#

𝐿# (𝑈# =

1
.1 1
.1 −.01 1
.1 −.01 −.01
.1 −.01 −.01

1
−.01 1

(

1 .1 .1
.99 −.01

.99

.1 .1
−.01 −.01
−.01 −.01
.99 −.01

.99

Need to use dense Gaussian
elimination
𝐿" $ 𝑈"

=

1
.1 1
.1 −.01 1
.1 −.01 −.01
.1 −.01 −.01

1
−.01 1

$

1 .1 .1
.99 −.01

.99

.1 .1
−.01 −.01
−.01 −.01
.99 −.01

.99

o Need 𝒏𝟐 locations to store 𝐿’ and 𝑈’
o Same amount of work as dense Gaussian elimination, 𝟐

𝟑
𝒏𝟑

Order of rows and columns is extremely
important!

How do we choose optimal
permutations of rows and columns?
o We have seen that we can minimize storage if the

correct order of rows/columns is used
o However, choosing the optimal order or permutations of

rows and columns is extremely hard (NP-complete!)
o All known algorithms to find optimal permutation

grows exponentially with 𝑛
o We need to settle for using heuristics (more

practical/experimental way of problem-solving, but
may not be most optimal)

Rough strategy for optimizing
Factorization of Sparse Matrices

1. Design/choose a data structure that holds only nonzero
entries of A

2. Design/choose data structure to accommodate new
entries of L and U that fill in during elimination
o Option 1: Data grows dynamically
o Option 2: Pre-compute size w/o actually performing

elimination (computation must not be costly)
3. Use the data structure to perform only minimum number

of floating point operations

Learn by Benchmarking!

o Check out this MATLAB example:
https://www.mathworks.com/help/matlab/math/sparse-
matrix-reordering.html

o Follow the discussion and try to run the sample codes on
MATLAB Online (your up.edu.ph webmail account
should have access)

o If you need a tutorial on Cholesky decomposition, see
the youtube link provided on UVLe

https://www.mathworks.com/help/matlab/math/sparse-matrix-reordering.html

Software for Sparse Matrix Operations

o MATLAB:
o Operations on sparse matrices return sparse matrices;

operations on full matrices return full matrices
o MATLAB only stores nonzero entries of sparse

matrices
o Has built in functions for sparse matrix creation and

manipulation

https://www.mathworks.com/help/matlab/sparse-matrices.html

Software for Sparse Matrix Operations

o Other public domain and commercial sparse matrix
software are available

o Active research area; difficult to recommend a single
best algorithm

Software for Sparse Matrix Operations

Software to solve sparse linear systems, taken from Applied Numerical Linear Algebra by James W. Demmel

Key Takeaways

o Sparse matrices provide computational advantages:
o Memory management: minimize required memory

locations by storing only nonzero elements
o Computational efficiency: only perform essential

operations, i.e. do not perform multiplications and
additions by 0, for example

o Choosing the best algorithm/software is not
straightforward
o Need substantial knowledge of the matrix to know the

optimal data structure and algorithm
o No “one-size-fits-all” solution

