CoE 163

Computing Architectures and Algorithms

o

Sparse Matrices

L 4



What are sparse matrices?

o Matrices with large number of zero entries

o If there are enough zeros, it might be worth using an
algorithm that avoids:

o Storing zero entries

o QOperating on zero entries



How should our algorithm deal with
sparse matrices?

Many sparse methods available

Choosing the best one often requires substantial
knowledge about the matrix

We shall focus on basic issues in sparse Gaussian
elimination

Supplementary references and exercises you can try on
MATLAB are provided



¢ Examples of Sparse Matrices
and Issues to Consider

o

\ 4

.



LU Factorization of an Arrow Matrix

o An arrow matrix forms an arrow with its nonzero entries
o Consider the example below:

_
‘0 11

o0 L

\ 4

el

1
1 .1 .1 .1

o [The zero entries have been left blank]
o What happens when we perform LU factorization? (try to
solve it yourself manually—or use software)



LU Factorization of an Arrow Matrix

PRk R R

N el
]

96




LU Factorization of an Arrow Matrix

-1

entries of A

1

1

1

1

e

d1 14

None of the zero entries of A were filled in
L and U together can be stored in (overwrite) the nonzero

N
9\

Total essential arithmetic operations (exclude adding or

multiplying by zero): only 12

o 4 divisions for last row of L

o 8 multiplications and additions to compute the bottom
rightmost entry (0.96 in the example)



LU Factorization of an Arrow Matrix

o LU factorization on a typical (not sparse) n-by-n matrix:
o Need n2 |ocations to store matrix

“ O §n3 floating point operations
¢ o LU factorization on an n-by-n arrow matrix:
o Only need 3n — 2 locations to store matrix

‘ . o 3n — 3 floating point operations

o When n is large, space required and number of
operations is tiny compared to dense LU
factorization

\ 4




What if we reversed the order of
columns and rows?

o Suppose we instead had A’ shown below. What happens
when we do LU factorization?

1.1 .1 .17
1

A 1

Il
— e e




L’ and U’ have filled completely!

1 1 1 1 1
d1 1
AI: .1 1 —L’ UI

! 1

L1 1
! 111 1 ! 1 17
! 1 99 —-01 -01 -.01
1 =01 1 ' 99 —-01 -.01
1 —-.01 -.01 1 99 -.01
.1 -01 -01 —-01 11°¢ 99 |




Need to use dense Gaussian

elimination
L.y
-1 171 1 1 1 1-
1 1 99 —01 —01 —.01
L 4 =l 1 —01 1 : 99 —01 —-.01
4 * 1 —01 —-01 1 99 —.01
1 —01 —01 —01 141 99 |

o Need n? locations to store L’ and U’
. .. . 2
o Same amount of work as dense Gaussian elimination, §n3

N

\ 4




¢ Order of rows and columns is extremely
iImportant!

\ 4

.



How do we choose optimal
permutations of rows and columns?

o We have seen that we can minimize storage if the
correct order of rows/columns is used
¢ o However, choosing the optimal order or permutations of
¢ rows and columns is extremely hard (NP-complete!)
¢ o All known algorithms to find optimal permutation
grows exponentially with n
o We need to settle for using heuristics (more
‘ ‘ practical/experimental way of problem-solving, but
may not be most optimal)




Rough strategy for optimizing
Factorization of Sparse Matrices

1. Design/choose a data structure that holds only nonzero

¢ entries of A
S 2. Design/choose data structure to accommodate new
¢ entries of L and U that fill in during elimination

o Option 1: Data grows dynamically
o Option 2: Pre-compute size w/o actually performing
elimination (computation must not be costly)

3. Use the data structure to perform only minimum number
of floating point operations

N

\ 4




Learn by Benchmarking!

o Check out this MATLAB example:
https://www.mathworks.com/help/matlab/math/sparse-
matrix-reordering.html

o Follow the discussion and try to run the sample codes on
MATLAB Online (your up.edu.ph webmail account

should have access)

View MATLAB Command

o If you need a tutorial on Cholesky decomposition, see
the youtube link provided on UVLe


https://www.mathworks.com/help/matlab/math/sparse-matrix-reordering.html

Software for Sparse Matrix Operations

o MATLAB:

o Operations on sparse matrices return sparse matrices;
operations on full matrices return full matrices

o MATLAB only stores nonzero entries of sparse
matrices

o Has built in functions for sparse matrix creation and
manipulation neline

V' Creation

spalloc Allocate space for sparse matrix

spdiags Extract nonzero diagonals and create sparse band and diagonal matrices
speye Sparse identity matrix

sprand Sparse uniformly distributed random matrix

sprandn Sparse normally distributed random matrix

sprandsym Sparse s! ymmetric ran dom matrix

sparse Create sparse matrix

spconvert Import from sparse matrix external format

https://www.mathworks.com/help/matlab/sparse-matrices.html



Software for Sparse Matrix Operations

o Other public domain and commercial sparse matrix
software are available

¢ o Active research area; difficult to recommend a single
¢ best algorithm
¢

N




Matrix Status/

type Name Algorithm source

Serial algorithms

nonsym. | SuperLLU LL, partial, BLAS-2.5 Pub/NETLIB

nonsym. | UMFPACK [62, 63] MF, Markowitz, BLAS-3 Pub/NETLIB
MA38 (same as UMFPACK) Com/HSL

nonsym. | MA48 [96] Anal: RL, Markowitz Com/HSL

Fact: LL, partial, BLAS-1, SD

nonsym. | SPARSE [167] RL, Markowitz, scalar Pub/NETLIB

sym- MUPS [5] MF, threshold, BLAS-3 Com/HSL

pattern} { MA42 [98] Frontal, BLAS-3 Com/HSL

sym. MAZ27 [97]/MAA4T [95] MF, LDL", BLAS-1/BLAS-3 | Com/HSL

s.p.d. Ng & Peyton [191] LL, BLAS-3 Pub/Author

Shared-memory algorithms

nonsym.
nonsym.
sym-
pattern
nonsym.
s.p.d.

s.p.d.

SuperLU
PARASPAR [270, 271]
MUPS [6]

George & Ng [115]
Gupta et al. [133]

SPLASH [155]

LL, partial, BLAS-2.5
RL, Markowitz, BLAS-1, SD
MF, threshold, BLAS-3

RL, partial, BLAS-1
LL, BLAS-3

RL, 2-D block, BLAS-3

Pub/UCB
Res/Author
Res/Author

Res/Author
Com/SGI
Pub/Author
Pub/Stanford

Distributed-memory algorithms

sym.
sym-
pattern
s.p.d.
s.p.d.

s.p.d.

van der Stappen [245]
Lucas et al. [180]

Rothberg & Schreiber [207]
Gupta & Kumar [132]
CAPSS [143]

RL, Markowitz, scalar
MF, no pivoting, BLAS-1

RL, 2-D block, BLAS-3
MF, 2-D block, BLAS-3
MF, full parallel, BLAS-1
(require coordinates)

Res/Author
Res/Author

Res/Author
Res/Author
Pub/NETLIB

Software for Sparse Matrix Operations

Abbreviations used in the table:
nonsym. = nonsymimetric.
sym-pattern = symmetric nonzero structure, nonsymmetric values.
sym. = symmetric and may be indefinite.
s.p.d. = symmetric and positive definite.
MF, LL, and RL = multifrontal, left-looking, and right-looking.
SD = switches to a dense code on a sufficiently dense trailing submatrix.
Pub = publicly available; authors may help use the code.
Res = published in literature but may not be available from the authors.
Com = commercial.
HSL = Harwell Subroutine Library:
http://www.rl.ac.uk /departments/ccd/numerical /hsl/hsl.html.
UCB = http://www.cs.berkeley.edu/~xiaoye/superlu.html.
Stanford = http://www-flash.stanford.edu/apps/SPLASH/.

Software to solve sparse linear systems, taken from Applied Numerical Linear Algebra by James W. Demmel



Key Takeaways

o Sparse matrices provide computational advantages:
o Memory management: minimize required memory
locations by storing only nonzero elements
o Computational efficiency: only perform essential
¢ operations, i.e. do not perform multiplications and

additions by 0, for example

o Choosing the best algorithm/software is not
4

2\

straightforward

o Need substantial knowledge of the matrix to know the
optimal data structure and algorithm

o No “one-size-fits-all” solution




