
CoE 164
Computing Platforms

Assessments Week 02
Academic Period: 2nd Semester AY 2022-2023
Workload: 3 hours
Synopsis: Rust functions and data structures

SE Week 02A
This assessment will let you be familiar with functions and strings in Rust.

This is worth 40% of your grade for this week.

Problem Statement
In internet speech, a mocking sentence is written by
alternately or randomly using uppercase and lowercase
letters throughout the sentence. It has been popularized
through a meme from the Spongebob cartoon series, and
is used to mimic somebody's statement in a mocking
fashion. However, several years before, the Philippines
used a similar writing style as a text speech in a sociolect
attributed to the jejemon phenomenon. Its usage is more
of marking oneself as part of the phenomenon and does
not carry any mocking tone that we know of today.

You are working as an intern for a PG-rated video sharing site, and the company seniors
wanted to post-process the comments in a way that makes it PG-friendly. You are tasked to
"demock" paragraphs by making sure that each sentence (i.e. sequence of words that ends
with a period) starts with an uppercase letter and the remaining letters are all lowercase
letters.

Input
The input to the program starts with a number denoting the number of testcases. lines𝑇 𝑇
then follow, with each line denoting a paragraph of comments to demock.𝑆

For this problem, a word is a sequence of contiguous characters without a space in
between. A sentence is a sequence of space-separated words with the last word's last
character being a period. A paragraph is a sequence of sentences on a single line.

CoE 164 2s2223 | Page 1 of 9

Output
The output of the program consists of lines. Each line should be of the format Case𝑇
#T_i: S_{democked} starting with . should not have any leading or𝑇

𝑖
= 1 𝑆

𝑑𝑒𝑚𝑜𝑐𝑘𝑒𝑑

trailing spaces.

Constraints
Input Constraints

consists only of the following characters:𝑆

● uppercase letters A-Z
● lowercase letters a-z
● numbers 0-9
● space
● comma, period, semicolon, colon, apostrophe, hyphen, underscore

0 < |𝑆| ≤ 1000

You can assume that all of the inputs are well-formed and are always provided within these
constraints. You are not required to handle any errors.

Functional Constraints

You are required to write a function named democker(in_text: &String) ->
String which will return the democked version of in_text once the function finishes
running. You are also not allowed to add other functions in the code aside from
democker(in_text: &String) -> String and main().

Failure to follow these functional constraints will mark your code with a score of zero.

Sample Input/Output
Sample Input 1:

Input
3
ThE qUICK BROwN FOX jUMPs OVeR
THE lazy DoG. The qUick BrOwn
fOX JuMPs oveR the LaZy DOg.
In IntERNEt speEcH, A MocKINg
senteNCE IS WrItTen By
aLtErnatEly Or RAnDomlY USIng
UppercAse and LoweRCAsE LEttErs
thRoughoUt ThE sEntENCe. It Has
BEen populARIzEd THROugh a Meme

Output
Case #1: The quick brown fox
jumps over the lazy dog. The
quick brown fox jumps over the
lazy dog.
Case #2: In internet speech, a
mocking sentence is written by
alternately or randomly using
uppercase and lowercase letters
throughout the sentence. It has
been popularized through a meme
from the spongebob cartoon

CoE 164 2s2223 | Page 2 of 9

frOM thE SPOngeBOb caRtOon
SERiES, AnD Is USed tO MIMiC
SOMEBOdY's STatEMeNt In A
mockIng faSHIon. HoWevEr,
sevEral YeArS BefORE, the
PHilippinEs uSed a sIMilar
wRITINg StYlE As a TEXt sPEech
in a sOcIolECt atTRiBuTeD to
The _jejeMon_ pHenomeNON. its
usaGe IS MORE of MArkiNg
oneSElF AS paRt of tHE
pheNOmeNOn ANd DoeS NOt Carry
any mockIng Tone tHAt we knoW
Of TODaY.
feicHANg GaOXIng DI xIANG
ZHOngguO gUOjIA ZHUXi xIJInpIng
ZHONgGUO ZHu FeILvBiN dAShi
HuAnGXILiAn HE quAnTI
zhoNggUoREnmiN ZHIYi ReLIE
zhUHE QiNGzHu
zhONGhUARenmINGoNgHeGuO chENGLI
qIShIsAn ZHOuNIan ZHU qUAntI
zhongGUORENMiN GUoQING KUAIlE.

series, and is used to mimic
somebody's statement in a
mocking fashion. However,
several years before, the
philippines used a similar
writing style as a text speech
in a sociolect attributed to
the _jejemon_ phenomenon. Its
usage is more of marking
oneself as part of the
phenomenon and does not carry
any mocking tone that we know
of today.
Case #3: Feichang gaoxing di
xiang zhongguo guojia zhuxi
xijinping zhongguo zhu feilvbin
dashi huangxilian he quanti
zhongguorenmin zhiyi relie
zhuhe qingzhu
zhonghuarenmingongheguo chengli
qishisan zhounian zhu quanti
zhongguorenmin guoqing kuaile.

Steps
1. Write your program in Rust. Make sure to accept input via standard input and print

your output via standard output.
2. Submit a copy of the source code to the Week 02A submission bin. Make sure that

you attach one (1) file in the bin containing the Rust source code with a .rs extension
or .rs.txt extension (if UVLe doesn’t accept .rs files).

CoE 164 2s2223 | Page 3 of 9

SE Week 02B
This assessment will let you be familiar with structs and hashmaps in Rust.

This is worth 30% of your grade for this week.

Problem Statement
You are working as a records assistant in the
university tasked with safekeeping the student,
faculty, and staff "rolls". With the university existing for
a very long time, there are some records that are still
kept in record books, which you need to digitize. In
the time being, you will only encode the names,
degrees, and student numbers of the students written
in these books.

The first module of the digital record books is the
record finder. A user will enter the student number of a person and the module will return
the name and degree of the student. It is also capable of updating some information in case
any of these may change. Right now, only the degree of the student can be changed.

Input
The input starts with a number on a single line denoting the number of students to save𝑆
into the module. lines then follow, with each block of three lines denoting a student. The𝑆
first line of the block contains the 9-digit student number, the second line contains the
name of the student, and the third line contains the degree.

After the block of student information is a list of commands. The first line of this command
block contains a number denoting the number of commands that will follow. lines then𝐶 𝐶
follow, denoting a command. A command can be written in any of the two formats:

● g <sn> - fetch a record with the given student number sn.
● u <sn> <update_cmd> - update a record with the given student number sn.

○ update_cmd can only be from one of the following command:
■ d <degree> - update the degree of the student in the record with

degree

Output
The output consists of blocks of lines, with each block denoting the result of executing𝐶 𝑅

𝑖

the th command. The th block should contain the following depending on what the th𝐶
𝑖

𝑅
𝑖

𝐶
𝑖

command is. Please see the sample input(s) for reference.

● g <sn>

CoE 164 2s2223 | Page 4 of 9

○ Two or three lines containing information of the student with the student
number sn. The information is indented four spaces to the right.

○ If sn exists in the records:
■ Get <sn>

Name: <name>
Degree: <degree>

■ name and degree should be printed as is (i.e. how it was entered in
the records)

○ If sn does not exist in the records:
■ Get <sn>

Does not exist
● u <sn> <update_cmd>

○ Two lines denoting whether the update was successful or not. The update
status is indented four spaces to the right.

○ If a student with student number sn exists in the records:
■ Update <sn> <update_cmd>

Success
○ If sn does not exist in the records:

■ Update <sn> <update_cmd>
Does not exist

○ update_cmd should be one of the following depending on the update
command received:

■ d - Degree

Constraints
Input Constraints

0 < 𝑆, 𝐶 ≤ 100

sn always consists of nine digits.

name and degree will contain only alphabetical characters and spaces. There will be no
leading and trailing spaces in them

You can assume that all of the inputs are well-formed and are always provided within these
constraints. You are not required to handle any errors.

Functional Constraints

You are required to create and use a struct named StudentRecords with fields name:
String, degree: String, and sn: u32.

Failure to follow these functional constraints will mark your code with a score of zero.

Sample Input/Output
Sample Input 1:

CoE 164 2s2223 | Page 5 of 9

Input
3
201003243
Mark Reyes
BS Computer Engineering
200594938
John Asis
BS Computer Engineering
200648392
Milo Garcia
BS Computer Engineering
8
g 201003243
g 201129343
u 200648392 d BS Electronics
Engineering
u 201129343 d BS Electrical
Engineering
u 201003243 d MS Electrical
Engineering
g 201003243
g 200594938
g 200648392

Output
Get 201003243

Name: Mark Reyes
Degree: BS Computer

Engineering
Get 201129343

Does not exist
Update 200648392 Degree

Success
Update 201129343 Degree

Does not exist
Update 201003243 Degree

Success
Get 201003243

Name: Mark Reyes
Degree: MS Electrical

Engineering
Get 200594938

Name: John Asis
Degree: BS Electronics

Engineering
Get 200648392

Name: Milo Garcia
Degree: BS Electrical

Engineering

Sample Input 2:

Input
1
293849200
abcdeF
sSDed ndies
3
g 293849200
u 293849200 d abcdeF
g 293849200

Output
Get 293849200

Name: abcdeF
Degree: sSDed ndies

Update 293849200 Degree
Success

Get 293849200
Name: abcdeF
Degree: abcdeF

Steps
1. Write your program in Rust. Make sure to accept input via standard input and print

your output via standard output.
2. Submit a copy of the source code to the Week 02B submission bin. Make sure that

you attach one (1) file in the bin containing the Rust source code with a .rs extension
or .rs.txt extension (if UVLe doesn’t accept .rs files).

CoE 164 2s2223 | Page 6 of 9

SE Week 02C
This assessment will let you be familiar with enums and vectors in Rust.

This is worth 30% of your grade for this week.

Problem Statement
There is an increase in the use of smartwatches and fitness trackers in the past five years.
Mainly due to the increase of health-conscious users, smartphone companies have jumped
ship to create a new line of "wearables" designed to track biometrics and offer data-driven
fitness advice to users aside from still being the quintessential wristwatch. One of the perils
of using such devices is that data is usually stored in the "cloud" - i.e. the servers of the
company who manufactured the watch. As more people are also being conscious of how
and where their personal data is stored, you have decided to create an open-source fitness
tracker that lets users locally store their fitness data on their smartphone without
transmitting it via the internet.

A fitness tracker cannot be one without a way to keep a "diary" on which fitness-related
activity the user did during the course of a day. This is the first functionality you have
decided to work on for your open-source project. Most trackers have a preset number of
exercises it can track, but you have decided to track only three activities in the meantime -
walking, running, and biking. You have also decided to track their sleep, eat, and idle times,
which you would collectively call "rest" times.

In the meantime, the tracker will keep track of whether the user has achieved their sleep
and exercise goals and the maximum contiguous duration of their "exercise" and "rest"
activities throughout the day. The user sets the "goals" as the minimum cumulative time for
them to exercise or sleep during the day and it is said that they have surpassed it if they
have a cumulative time of at least that goal. On the other hand, an exercise or rest duration
is said to be contiguous if two or more consecutive activities are exercise- or rest-related
activities.

Input
The input starts with a number on a single line denoting the number of days. blocks𝑇 𝑇
then follow containing a list of activities done during the day. The first line of each block
contains two numbers denoting the exercise and sleep goals in minutes, respectively.𝐸 𝑆
Then, the next line will contain a number denoting the number of activities. It will then be𝐴
followed by lines, with each line written in the format . is a lowercase letter denoting𝐴 𝑐 𝑇 𝑐
the activity the user did (with the corresponding valid values shown in the table below) and

the duration of the activity.𝑇

Prefix Activity Type

CoE 164 2s2223 | Page 7 of 9

r running exercise

w walking exercise

b biking exercise

s sleeping rest

e eating rest

i idle rest

Output
The output consists of blocks of lines, with each block containing five lines. The first line𝑇
of a block should contain a string of the format where is the serial of the test case𝐶𝑎𝑠𝑒 #𝑡: 𝑡
starting from 1. The next two lines show whether the exercise or sleep goals have been
reached, respectively. The last two lines show the maximum contiguous duration of their
exercise and rest periods, respectively.

Constraints
Input Constraints

0 < 𝑇, 𝐴 ≤ 100

0 ≤ 𝐸, 𝑆 ≤ 1440

r, w, b, s, e, i𝑐 ∈ { }

You can assume that all of the inputs are well-formed and are always provided within these
constraints. You are not required to handle any errors.

Functional Constraints

You are required to create and use an enum named FitnessActivity containing the six
possible activities as subtypes: Walk(t: i64), Run(t: i64), Bike(t: i64), Eat(t:
i64), Sleep(t: i64), and Idle(t: i64).

Failure to follow these functional constraints will mark your code with a score of zero.

Sample Input/Output
Sample Input 1:

Input
3
60 480
10
s 480

Output
Case #1:
Exercise goal reached
Sleep goal reached
Max exercise duration: 25m

CoE 164 2s2223 | Page 8 of 9

w 15
i 30
r 10
i 180
e 60
i 300
w 25
i 30
w 15
0 0
1
i 180
60 480
3
s 60
w 15
s 60

Max rest duration: 480m
Case #2:
Exercise goal reached
Sleep goal reached
Max exercise duration: 0m
Max rest duration: 180m
Case #3:
Exercise goal not reached
Sleep goal not reached
Max exercise duration: 15m
Max rest duration: 60m

Steps
1. Write your program in Rust. Make sure to accept input via standard input and print

your output via standard output.
2. Submit a copy of the source code to the Week 02C submission bin. Make sure that

you attach one (1) file in the bin containing the Rust source code with a .rs extension
or .rs.txt extension (if UVLe doesn’t accept .rs files).

CoE 164 2s2223 | Page 9 of 9

