
CoE 164
Computing Platforms

Machine Problem 02
Academic Period: 2nd Semester AY 2020-2021
Workload: 6 hours
Synopsis: The fastest fast Fourier transform?
Submission Platform: Google Forms

Description
It was the early half of 2005, and you were getting exasperated with using Python to do
your data science work. That is because you need to import two different libraries that
perform the same matrix manipulation and math functions on differently-sized matrices -
namely Numeric and Numarray. Numeric is a relatively old library that is rich with methods
for matrix manipulation but is proven to be slow on very large data. You actually contributed
a library of math functions on top of it when you were a graduate student in the late 1990s.
On the other hand, Numarray was created as a response to this problem experienced by
Numeric. Unfortunately, it has the reverse issue - it can manipulate large amounts of data,
but is slow on small data! And worse, the data structures between the two are totally
different! You would need to convert your Numarray matrix to one that can be recognized by
Numeric, and vice versa. This is boilerplate code, and increases the amount of code and
time just to make this kind of interoperability work.

With that problem in mind, you are determined to make a library that will combine the
features of these two libraries together. Numarray has an expressive matrix slicing syntax
and broadcasting rules similar to Matlab that Numeric can benefit from. Since Numeric has
that rich set of math functions thanks to you, you have decided to bring the features of
Numarray to Numeric.

CoE 164 | Page 1 of 7

While doing the porting, you suddenly remembered SciPy, which is a math toolkit released
last 2001. SciPy has ported your late 1990s math library to theirs and has grown to a big
library with lots of math functions. It would be a waste of disk space if you only need, say,
the discrete Fourier transform (DFT) in it. So for the next few weeks, you have decided to
test whether it is possible to refactor the most important math functions in SciPy and merge
it into your Numarray + Numeric library by using the DFT as one of the bases. Although this
DFT is actually your port from a FORTRAN library, you still decided to try to re-code it in
another programming language.

The DFT of a one-dimensional time-domain signal vector of length is a one-dimensional𝑥 𝑁
frequency-domain signal vector of the same length. Each of ’s sample points, denoted𝑋 𝑥
as , can be used in the following equation.𝑥

𝑛

𝑋
𝑘

=
𝑛=0

𝑁−1

∑ 𝑥
𝑛
ω

𝑁
(𝑛, 𝑘)

is the twiddle factor, which are the coefficients of the transform expressed asω
𝑁

(𝑛, 𝑘)

. On the other hand, the inverse DFT of a one-dimensionalω
𝑁

(𝑛, 𝑘) = 𝑒𝑥𝑝(− 2π𝑗
𝑁 𝑛𝑘)

frequency-domain signal vector is a one-dimensional time-domain signal vector of the𝑋 𝑥
same length. Each of ’s sample points, denoted by , can be used in the following𝑋 𝑋

𝑛

equation.

𝑥
𝑛

= 1
𝑁

𝑘=0

𝑁−1

∑ 𝑋
𝑘
ω

𝑁
(− 𝑛, 𝑘)

The most common way to compute for the DFT is by using the fast Fourier transform (FFT).
It is a relatively old algorithm that takes advantage of the symmetry in DFT by following a
divide-and-conquer approach and reusing the twiddle factors in mirrored sample points.
Within the class of FFT algorithms, the Cooley-Tukey FFT algorithm is the most used one
because of its implementation simplicity and numerical stability. It splits a signal into even
and odd indices, and are merged at the end to determine the DFT. Your FORTRAN library
actually uses an implementation of this, which divides your 1D signal into a 2D one!
However, you were also acquainted with a specific variation of it named the split-radix FFT
algorithm, which was formulated as early as the late 1960s.

CoE 164 | Page 2 of 7

The split-radix FFT algorithm is similar to the popular Cooley-Tukey FFT algorithm except
that the odd part is also further split into two more alternating elements. In summary, the
DFT equation above is rewritten as follows.

𝑋
𝑘

=
𝑛=0

𝑁
2 −1

∑ 𝑥
2𝑛

ω 𝑁
2

(𝑛, 𝑘)

+ ω
𝑁

(1, 𝑘)
𝑛=0

𝑁
4 −1

∑ 𝑥
4𝑛+1

ω 𝑁
4

(𝑛, 𝑘)

+ ω
𝑁

(1, 3𝑘)
𝑛=0

𝑁
4 −1

∑ 𝑥
4𝑛+3

ω 𝑁
4

(𝑛, 𝑘)

𝑋
𝑘

= 𝑋
𝑒𝑣𝑒𝑛

+ ω
𝑁

(1, 𝑘)𝑋
𝑜𝑑𝑑1

+ ω
𝑁

(1, 3𝑘)𝑋
𝑜𝑑𝑑3

The first summation denotes the terms with even indices starting at 0, the second denotes
the terms with indices starting at 1 skipping by 4, and the last denotes the terms with
indices starting at 3 skipping by 4. After the splitting stage, we can combine these three
terms together by reusing more twiddle factors, looking at symmetry, and assembling the
DFT by quarters instead by computing these four signal slices below for between and𝑘 0

inclusive.𝑁
4 − 1

𝑋
𝑘

= 𝑋
𝑒𝑣𝑒𝑛,𝑘

+ (ω
𝑁

(1, 𝑘)𝑋
𝑜𝑑𝑑1,𝑘

+ ω
𝑁

(1, 3𝑘)𝑋
𝑜𝑑𝑑3,𝑘

)

𝑋
𝑘+ 𝑁

4
= 𝑋

𝑒𝑣𝑒𝑛,𝑘+ 𝑁
4

− 𝑗(ω
𝑁

(1, 𝑘)𝑋
𝑜𝑑𝑑1,𝑘

− ω
𝑁

(1, 3𝑘)𝑋
𝑜𝑑𝑑3,𝑘

)

𝑋
𝑘+ 𝑁

2
= 𝑋

𝑒𝑣𝑒𝑛,𝑘
− (ω

𝑁
(1, 𝑘)𝑋

𝑜𝑑𝑑1,𝑘
+ ω

𝑁
(1, 3𝑘)𝑋

𝑜𝑑𝑑3,𝑘
)

𝑋
𝑘+ 3𝑁

4
= 𝑋

𝑒𝑣𝑒𝑛,𝑘+ 𝑁
4

+ 𝑗(ω
𝑁

(1, 𝑘)𝑋
𝑜𝑑𝑑1,𝑘

− ω
𝑁

(1, 3𝑘)𝑋
𝑜𝑑𝑑3,𝑘

)

In summary, denotes the th element of the first summation, the th element𝑋
𝑒𝑣𝑒𝑛,𝑘

𝑘 𝑋
𝑜𝑑𝑑1,𝑘

𝑘

of the second summation, and the th element of the third summation. Finally, the𝑋
𝑜𝑑𝑑3,𝑘

𝑘

DFT can now be expressed as a concatenation of these four signal slices shown as a bad
abuse of math syntax.

CoE 164 | Page 3 of 7

𝑋 = [𝑋
𝑘
, 𝑋

𝑘+ 𝑁
4

, 𝑋
𝑘+ 𝑁

2
, 𝑋

𝑘+ 3𝑁
4

]

This relatively simple re-expression purportedly reduces the number of additions and
multiplications to its lowest. Note that both the Cooley-Tukey and split-radix algorithms only
work for signals whose sizes are a power of two.

With this information, you have decided to implement this split-radix FFT algorithm instead
for a change. You will still want to deal with signals whose sizes are not a power of two. For
simplicity, you have decided to append zeros at the ends of these signals such that the
signals become a size of a power of two. Also, the time-domain signals will always be
expressed as integers, and the resulting complex-number frequency-domain
transformations will always be rounded down to six decimal places.

As you see a long list of porting tasks awaits, you have used the SciPy forums to find a
partner that can help you verify that your FFT is correct and it works.

Alternate Universe 1: Found a partner!
Somebody noticed your post and was interested to work with you. Now, you have tasked
your partner to implement the inverse split-radix FFT, which will reduce your porting job in
this specific library in half, and also have a test file associated with your module.

Alternate Universe 2: No partner!
Unfortunately, nobody read your post and are now left with implementing both the FFT and
IFFT modules. However, since you do not want to dwell on this task for too long, you have
prioritized implementing the FFT.

Input
The input to the FFT module starts with a number on a line indicating the number of𝑇
time-domain signals to transform. Then, the next lines denote each signal to be𝑇
transformed. Each line consists of a string of integers, with the first number indicating the𝑁
number of sample points that will follow, and the next integers indicating the sample𝑁
points .𝑥

𝑖

Output
The output from the FFT module starts with the number on a line denoting the number of𝑇
frequency-domain signals that were transformed. Then, the next lines denote each signal𝑇
that was transformed. Each line consists of a string of complex numbers, with the first
positive integer indicating the length of the original time-domain signal, the second𝑁
positive integer indicating number of sample points that will follow, and the next𝐾 𝐾
complex numbers indicating the sample points .𝑋

𝑖

CoE 164 | Page 4 of 7

The complex numbers should be denoted in the format +r+cj where is the real part𝑋
𝑖

𝑟

and is the imaginary part. Both of these parts should have signs and are expressed𝑐

rounded down (i.e. floored) to tolerance, meaning that there should be exactly six10−6

digits after their respective decimal points. Zeros can be represented by both a positive or a
negative sign. Refer to the sample output for specific examples.

Example
Input
5
1 -4
2 1 1
4 1 0 1 0
5 1 2 3 4 5
3 -8 -7 5

Output
5
1 1 -4.000000+0.000000j
2 2 +2.000000+0.000000j +0.000000-0.000000j
4 4 +2.000000+0.000000j +0.000000-0.000000j +2.000000+0.000000j
+0.000000-0.000000j
5 8 +15.000000+0.000000j -5.414214-7.242641j +3.000000+2.000000j
-2.585786-1.242641j +3.000000+0.000000j -2.585786+1.242641j +3.000000-2.000000j
-5.414214+7.242641j
3 4 -10.000000+0.000000j -13.000000+7.000000j +4.000000+0.000000j
-13.000000-7.000000j

Additional Description/Requirements
The module will only accept these range or set of variables:
𝑇 ≤ 100
𝑥

𝑖
∈ 𝑍, |𝑥

𝑖
| ≤ 10000

𝑋
𝑖

∈ 𝐶

1 ≤ 𝑁 ≤ 10000

𝐾 ∈ 2𝑑, 𝑑 ∈ 𝑁0

As this is a partner task, the person tasked with writing the inverse FFT algorithm should
create a module whose input and output are reversed in relation to the FFT module. That is,
the input to this module follows the output specifications, and the output follows the input
specifications. The output of this module should be exactly the same as the input to the
FFT module. Sample input and output to this inverse FFT module is shown below.

Input

CoE 164 | Page 5 of 7

5
1 1 -4.000000+0.000000j
2 2 +2.000000+0.000000j +0.000000-0.000000j
4 4 +2.000000+0.000000j +0.000000-0.000000j +2.000000+0.000000j
+0.000000-0.000000j
5 8 +15.000000+0.000000j -5.414214-7.242641j +3.000000+2.000000j
-2.585786-1.242641j +3.000000+0.000000j -2.585786+1.242641j +3.000000-2.000000j
-5.414214+7.242641j
3 4 -10.000000+0.000000j -13.000000+7.000000j +4.000000+0.000000j
-13.000000-7.000000j

Output
5
1 -4
2 1 1
4 1 0 1 0
5 1 2 3 4 5
3 -8 -7 5

Both modules should accept input through standard input, either through the command
line, or through input redirection. Conversely, both should print output to the standard
output.

Note that the FFT algorithms work only with signals whose sizes are a power of two. Hence,
you need to append zeros at the ends of these signals such that the signals become a size
of a power of two before processing. On the other hand, you can assume that the IFFT
module will only have to process signals whose sizes are always a power of two.

In homage to SciPy, you have decided to name the future library NumPy, as it is a
combination of the Numeric and Numarray libraries. Since you are still in the process of
making the library, you decided not to use any of these libraries (i.e. it is forbidden to import
NumPy, Numeric, or Numarray to your module) if you decided to write your module in
Python. At this point, you have been doing a lot of work porting them to NumPy. Hence, it
would be a waste of time in the meantime to write a thorough documentation for your
module. However, because you believe that you can easily forget things and there may be a
chance in the future when you revisit the code, you try your best to write self-documenting
code. This means that, among other things, you write your variables throughout your code
to clearly label their purposes and add comments to code that can be hard to understand.

You still retained the text logs that you have written together with your 1990s library.
Attached with this paper is a file outlining the split-radix FFT algorithm.

CoE 164 | Page 6 of 7

You have accidentally discovered through close friends that Google has been using a cloud
storage platform internally named Google Drive early this year and are planning to release it
in 2012. You have used the service incognito, and have set-up a Google Form (which will be
released in 2014) where you will be uploading the modules (as a source code file; in TXT if
the system does not support the file extension).

The one who made the FFT module will upload the FFT module and acknowledge their
partner on the submission notes (by writing their student number, if any). The one who
made the IFFT module will also do the same for their IFFT module.

Grading Rubric
Alternate Universe 1: Found a partner!
FFT module writer
5% Input and output handling for FFT
30% Algorithm to split signals in FFT
30% Algorithm to merge FFT calculations
10% Self-documenting code
10% Acknowledgement of IFFT partner**

IFFT module writer
5% Input and output handling for IFFT
30% Algorithm to split signals in IFFT
30% Algorithm to merge IFFT calculations
10% Self-documenting code
10% Acknowledgement of FFT partner**

Joint
15% Input-output compatibility among the two modules

** 5% if unacknowledged without or non-solid explanation, 0% if unacknowledged with
solid explanation

Alternate Universe 2: No partner!
5% Input and output handling for FFT
5% Input and output handling for IFFT
30% Algorithm to split signals in FFT
30% Algorithm to merge FFT calculations
5% Algorithm to split signals in IFFT
5% Algorithm to merge IFFT calculations
10% Input-output compatibility among the two modules
10% Self-documenting code

CoE 164 | Page 7 of 7

