
CoE 164
Computing Platforms

Software Exercise 02
Academic Period: 2nd Semester AY 2021-2022
Workload: 6 hours
Synopsis: Website Priority Queueing
Submission Platform: UVLe Submission Bin

Introduction
As a fresh graduate, you opted to work at a
startup company which provides IT solutions to
small and large-scale businesses. One project of
this company is to handle requests coming from
multiple client websites which will be processed
by a back-end mainframe system. The
mainframe system runs faster compared to
normal computers; however, it can only process
a limited number of requests simultaneously.
Since the company you're working for could not
afford to buy licenses for queuing platforms
such as IBM ActiveMQ, you were asked to
create a robust and efficient queuing system that can temporarily store the requests to be
picked up by the mainframe once it has free processing capacity. You investigated possible
solutions from your previous collegiate computer engineering courses and remembered
something about binary trees and heaps.

The queuing system should be able to handle the following commands: 1) adding of jobs, 2)
batch execution of jobs, 3) printing of the jobs and their details from the queue, and 4)
printing of already executed jobs. When the system is started, it can optionally have an
initial amount of jobs in the queue. Additionally, it works under a priority system - a job of
higher priority should appear at the front over a lower one, which in turn will be executed
first. Finally, it can only have at most 30 jobs in it, so it will refuse any additions to it if it is
already full.

Each job in the system is to be entered in a single line. It has a priority number, name, and
creation date, like 10 run_invoice_reports 2022-04-26, all separated by a single
space. When comparing two jobs, the one that has a greater priority number has the higher
priority. If they have the same priority numbers, the one with the earliest creation date has
the higher priority. If they also have the same creation date, then the one whose job name
appears earlier alphabetically has the higher priority.

CoE 164 SE02 | Page 1 of 5

When jobs are added, the queue will handle the
priority ordering depending on the rules set above.
The system can only add up to 5 jobs at the same
time. If the queue is already full, the system will refuse
to add any additional jobs and will record the amount
of jobs that were “dropped” in this manner.

When a batch execution is requested, the queue will
pop the frontmost jobs in it starting from the one with
the highest priority. These jobs shall be saved in a
history log ordered by execution date. If the number of
jobs to be executed is greater than the queue size, the system will pop all the available jobs
in the queue.

The system can print the contents of the queue as if it is a binary tree. It should be able to
print the contents in pre-, in-, and post-order traversals. A short graphic for reference to
these traversals is shown on this page.

The system can also print a history of already executed jobs in descending execution date.
In other words, the one with the highest priority in a batch execution appears last in this list.

Now your queuing system is complete and ready for client demo!

Input
The input to the program starts with a number indicating the number of jobs to be𝐽

𝑖𝑛𝑖𝑡

initially loaded into the queuing system. Each of the next lines contain a job description𝐽
𝑖𝑛𝑖𝑡

of the format . After these lines, there will be a number indicating𝑝𝑟𝑖𝑜 𝑗𝑜𝑏𝐷𝑒𝑠𝑐 𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑎𝑡𝑒 𝐶
the number of commands that will be sent to the queuing system. Each of the next blocks𝐶
of lines contain a command of the format . The supported commands are as𝑐𝑚𝑑 𝑖𝑛𝑝𝑢𝑡
follows.

● add_jobs 𝐽
𝑎𝑑𝑑

○ Add number of jobs into the queue. The next lines contain a job𝐽
𝑎𝑑𝑑

𝐽
𝑎𝑑𝑑

description of the format .𝑝𝑟𝑖𝑜 𝑗𝑜𝑏𝐷𝑒𝑠𝑐 𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑎𝑡𝑒
● exec_jobs 𝐽

𝑒𝑥𝑒𝑐

○ Execute number of jobs from the queue from highest priority level𝐽
𝑒𝑥𝑒𝑐

● print_queued_jobs 𝑄
𝑗𝑜𝑏𝑠

○ Print all of the jobs in the queue using mode .𝑄
𝑗𝑜𝑏𝑠

𝑄
𝑗𝑜𝑏𝑠

∈ {𝑝𝑟𝑒, 𝑖𝑛, 𝑝𝑜𝑠𝑡}

● print_exec_hist
○ Print all of the executed jobs from the most recent execution.

CoE 164 SE02 | Page 2 of 5

Output
The output should consist of blocks of lines. The first line should contain a string𝐶 + 1
“Loaded job(s) into queue”. The next blocks will contain the output of each𝐽

𝑖𝑛𝑖𝑡
𝐶

corresponding command. For each command , the output in the corresponding block is𝑐
𝑖

𝑐
𝑖

as follows:

● add_jobs 𝐽
𝑎𝑑𝑑

○ “[ADD] job(s) and refused job(s)”𝐽
𝑎𝑑𝑑

𝑄
𝑑𝑟𝑝

● exec_jobs 𝐽
𝑒𝑥𝑒𝑐

○ “[EXEC] job(s)”𝐽
𝑒𝑥𝑒𝑐

● print_queued_jobs 𝑄
𝑗𝑜𝑏𝑠

○ First line contains “[PRINT] job(s) in queue (order)”.𝑄
𝑗𝑜𝑏𝑠

𝑀

○ Next lines contain each job in the queue of the format𝑄
𝑗𝑜𝑏𝑠

𝑝𝑟𝑖𝑜 𝑗𝑜𝑏𝐷𝑒𝑠𝑐 𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑎𝑡𝑒
● print_exec_hist

○ First line contains “[HIST] executed job(s)”𝐻
○ Next lines contain each executed job of the format𝐻 𝑗𝑜𝑏𝐷𝑒𝑠𝑐 𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑎𝑡𝑒

Example
Input
1
3
1 run_invoice_reports 2022-04-26
3 examine_sales_note 2022-04-30
4 download_journal_comment 2022-04-30
7
add_jobs 2
1 run_invoice_reports 2022-04-28
2 check_financial_report 2022-04-27
print_queued_jobs pre
print_queued_jobs in
print_queued_jobs post
exec_jobs 3
print_queued_jobs post
print_exec_hist

Output
Loaded 3 job(s) into queue
[ADD] 2 job(s) and refused 0 job(s)
[PRINT] 5 job(s) in queue (preorder)
4 download_journal_comment 2022-04-30

CoE 164 SE02 | Page 3 of 5

3 examine_sales_note 2022-04-30
1 run_invoice_reports 2022-04-28
2 check_financial_report 2022-04-27
1 run_invoice_reports 2022-04-26
[PRINT] 5 job(s) in queue (inorder)
1 run_invoice_reports 2022-04-28
3 examine_sales_note 2022-04-30
2 check_financial_report 2022-04-27
4 download_journal_comment 2022-04-30
1 run_invoice_reports 2022-04-26
[PRINT] 5 job(s) in queue (postorder)
1 run_invoice_reports 2022-04-28
2 check_financial_report 2022-04-27
3 examine_sales_note 2022-04-30
1 run_invoice_reports 2022-04-26
4 download_journal_comment 2022-04-30
[EXEC] 3 job(s)
[PRINT] 2 job(s) in queue (postorder)
1 run_invoice_reports 2022-04-28
1 run_invoice_reports 2022-04-26
[HIST] 3 executed job(s)
check_financial_report 2022-04-27
examine_sales_note 2022-04-30
download_journal_comment 2022-04-30

Additional Description/Requirements
Your program can only support the following limits:

0 ≤ 𝐽
𝑖𝑛𝑖𝑡

≤ 100

1 ≤ 𝑝𝑟𝑖𝑜 ≤ 100
is in ISO 8601 format (i.e. YYYY-MM-DD)𝑐𝑟𝑒𝑎𝑡𝑒𝐷𝑎𝑡𝑒

only contains characters from the ASCII set and does not contain any control𝑗𝑜𝑏𝐷𝑒𝑠𝑐
characters or whitespace
1 ≤ 𝐽

𝑎𝑑𝑑
≤ 5

1 ≤ 𝐽
𝑒𝑥𝑒𝑐

≤ 25

pre, in, post𝑀 ∈ { }
add_jobs, exec_jobs, print_queued_jobs, print_exec_hist𝑐𝑚𝑑 ∈ { }

You can assume that all of the inputs are well-formed and within the above constraints, and
you are not required to handle any errors arising from them. After all, you are pressed for
deadlines!

Since your company cannot afford purchasing enterprise-grade queueing platforms, much
less have a patent liability, your program should not use any library that implements some
sort of priority queueing system. Additionally, for the sake of internal use and for it to

CoE 164 SE02 | Page 4 of 5

function offline, your program should also not use any libraries that need to be downloaded
off the internet (e.g. libraries that have to be downloaded from pip (for Python) or npm (for
Javascript) are prohibited).

Please put a readme.txt for instructions on how to install the necessary platforms to run the
code and the running guide itself. Non-runnable codes will be graded as-is.

Grading Rubric
10% Program initialization - able to accept an initial list of jobs
10% Add jobs - able insert jobs into queue
40% Batch execute jobs - able to batch execute jobs and record those to the history list
10% Print in-order - correct printing of queued jobs in-order
10% Print pre-order - correct printing of queued jobs pre-order
10% Print post-order - correct printing of queued jobs post-order
10% Print history - correct printing of executed job history

CoE 164 SE02 | Page 5 of 5

