
CoE 164
Computing Platforms

Assessments Week 02
Academic Period: 2nd Semester AY 2023-2024
Workload: 3 hours
Synopsis: Rust compound data structures

SE Week 02A
This assessment will help you become familiar with mutating structs and enums in Rust.

This is worth 40% of your grade for this week

Problem Statement
Platform games (platformers) have an objective to
move a player character between points in an
environment. One of the old ways to implement
platformers is by adding side-scrolling backgrounds
and making the player character move from left to
right (or move the background from right to left) on the
screen. The most popular and iconic one involves an
Italian plumber going through gigantic pipes.

Our goal is to be able to emulate a side-scrolling
platform game. The player character has a name and can optionally carry at most one item
with a certain quantity. At the start of the game, the player is located at position 0. The
player can then do one of the following three moves: go left, go right, or use an item. Going
left subtracts one to their position and going right adds one to their position. On the other
hand, when an item is used, the existence of the item is checked first. If it does, then its
quantity is subtracted by one.

The catch is that player information and state should be stored and manipulated using
constructs in Rust, a programming language that you currently study. More specifically, a
player is represented as a struct that holds its name, current item, and current position.
The state of the current item is then represented by another struct, whose quantity on
hand is then represented as an enum. Representing it in terms of "native" types enables
faster and more convenient processing of data than if we were to store the information as a
pile of different unconnected variables.

CoE 164 2s2324 W02 SE | Page 1 of 17

Input
The input starts with a number on a single line denoting the number of players. blocks𝑇 𝑇
of lines then follow. The first line of a block starts with three space-separated values
p_name ui_name ui_qty denoting the name of the player, name of their item, and the
number of that item that they initially have on hand. The next line contains a number n_cmd
denoting the number of player moves that will follow. n_cmd lines then each follow, with
each line being only from one of the following values: left, right, uitem.𝐶

𝑖

Output
The output consists of blocks of lines, with each block denoting the corresponding player𝑇
in the input. Each block should start with a line containing the text where is the𝑃𝑙𝑎𝑦𝑒𝑟 #𝑡: 𝑡
serial of the player starting from 1. The next line then contains the text Player:
<p_name> where <p_name> is player name. The next line then contains information about
the item the player initially has, which can be from one of the following

● Item: <ui_qty> <ui_name>

○ If ui_qty is greater than 0, then this is printed with the name of item
ui_qty and ui_qty the number of initial items

● Item: NONE

○ If ui_qty is zero

The next line then contains the string –-–-–-–-–-LOG–-–-–-–-–- (string LOG
surrounded by ten dashes each) that separates player information from movement
information.

Then, the next n_cmd lines correspond to the respective player moves in the input. For
each move, the text should be only from one of the following:

● For left move
○ New position: <pos-1>

● For right move
○ New position: <pos+1>

● For uitem move
○ If current ui_qty is zero

■ Cannot use item as player does not have one.

○ Otherwise, if current ui_qty-1 is zero
■ Player used <<ui_name>>. It is now gone.

○ Otherwise, if ui_qty-1 is greater than zero
■ Player used <<ui_name>>. <ui_qty-1>x of

<<ui_name>> remains.

CoE 164 2s2324 W02 SE | Page 2 of 17

Please see the sample output for more details.

Constraints
Input Constraints
𝑇 ≤ 10

ui_qty ; ui_qty∈ 𝑍+ ∪ {0} ≥ 0

n_cmd ; n_cmd∈ 𝑍+ ∪ {0} ≤ 50
p_name , ui_name| | | | ≤ 50

left, right, uitem𝐶
𝑖

∈ { }

Characters in p_name and ui_name are always from within the set [a-zA-Z0-9_].

You can assume that all of the inputs are well-formed and are always provided within these
constraints. You are not required to handle any errors.

Functional Constraints
You are required to create and use the following structs and enums:

● Player - struct representing information about a player
○ name: String - player name
○ pos: i64 - current position of player
○ item: Option <PlayerItem> - current item of player

● PlayerItem - struct representing information about an item
○ name: String - item name
○ item_type: PlayerItemQtyType - number of this item on hand

● PlayerItemQtyType - enum representing quantity of an item
○ Once - the item can be used once
○ Consumable(u64) - the item has at least more than one copy

■ First argument - current number of items

You are required to have the following function signatures, their arguments in order, and
their return values:

● main() - entry point to the program
○ Arguments

■ None
○ Return value

■ None
○ Additional constraints

■ Input and output parsing should be done here

You are required to create a variable of type Player and manipulate it when dealing with
player moves.

CoE 164 2s2324 W02 SE | Page 3 of 17

Failure to follow these functional constraints will result in a score of zero in this assessment.

Sample Input/Output

Sample Input 1:
1
MyPlayer_02 potion 3
10
left
left
right
right
right
right
uitem
right
uitem
left

Sample Output 1:
Player #1:
Name: MyPlayer_02
Item: 3x potion
----------LOG----------
New position: -1
New position: -2
New position: -1
New position: 0
New position: 1
New position: 2
Player used <potion>. 2x of <potion> remains.
New position: 3
Player used <potion>. 1x of <potion> remains.
New position: 2

Sample Input 2:
2
MyPlayer bullets 5
6
left
uitem
uitem
uitem
uitem
uitem
MyPlayer item 0
0

Sample Output 2:
Player #1:
Name: MyPlayer
Item: 5x bullets
----------LOG----------

CoE 164 2s2324 W02 SE | Page 4 of 17

New position: -1
Player used <bullets>. 4x of <bullets> remains.
Player used <bullets>. 3x of <bullets> remains.
Player used <bullets>. 2x of <bullets> remains.
Player used <bullets>. 1x of <bullets> remains.
Player used <bullets>. It is now gone
Player #2:
Name: MyPlayer
Item: NONE
----------LOG----------

Steps
1. Write your program in Rust. Compile and make sure that there are no syntax errors.
2. Make sure to accept input via standard input and print your output via standard

output. For example, you can write your inputs into a text file named in_pub.txt
and the expected and correct outputs into another text file named
out_pub_ans.txt. If the compiled program is named wa, and you want the
printed output to be saved into a file named out_pub.txt, you can execute the
following command from the following terminals to run it:

Windows (Powershell): cat in_pub.txt | ./wa.exe | Out-File
out_pub.txt

Linux/macOS (bash, zsh): ./wa < in_pub.txt > out_pub.txt

Then, compare the program output with the reference output by executing the
following commands:

Windows (Powershell): Compare-Object (gc out_pub.txt) (gc
out_pub_ans.txt)

Linux/macOS (bash, zsh): diff out_pub.txt out_pub_ans.txt

3. Submit a copy of the source code to the Week 02A submission bin. Make sure that
you attach one (1) file in the bin containing the Rust source code with a .rs
extension (preferably named w02a.rs). Please do not send compressed files!

CoE 164 2s2324 W02 SE | Page 5 of 17

https://uvle.upd.edu.ph/mod/assign/view.php?id=613146

SE Week 02B
This assessment will help you become familiar with structs in Rust.

This is worth 30% of your grade for this week.

Problem Statement
The Computerized Registration System
(CRS) is the official registration system of
UP Diliman. When you log in to the
system via your browser, you will be
greeted with a summary of your
registration details for the current semester. Two of the important information you need to
check before every enrollment period is eligibility and accountability since you can
encounter hindrances in your enrollment, and hence registration, if you are ineligible or have
accountabilities.

As an all-in-one system, degree completion is also recorded through the CRS, which
includes you being able to view the grades for all of your courses that you have taken
during your stay in the university. Under the "Grades Viewing" module, you can check
whether you have satisfied the required general education (GE) courses for your degree
program. As of this current time of writing, students are required to take the following GE
courses. Note that some courses can be taken as substitute for another one denoted by a
slash:

● ARTS 1
● Fil 40
● Kas 1
● Philo 1
● Eng 13/Speech 30
● STS 1/DRMAPS
● Soc Sci 1/Soc Sci 2

Your current goal is to be able to replicate a command line version of the CRS frontpage.
You have surmised that initial tests of the CRS include having a program that accepts
commands that change the state of a student. For example, a command can edit student
information. A command can also set the eligibility and accountability of a student. Finally,
there is also probably a command that can set the courses already completed or passed by
the student.

Input
The input starts with a number on a single line denoting the number of students. blocks𝑇 𝑇
of lines then follow. The first line of a block starts with two space-separated numbers

CoE 164 2s2324 W02 SE | Page 6 of 17

n_cmd sn denoting the number of commands that will follow and the student number of
the student. n_cmd lines then each follow, with each line of the general format cmd arg

with cmd being the command and arg the argument for the relevant command. cmd shall
be from one of the three following formats:

● e <y/n> - set eligibility of student; y if they are and n otherwise
● a <y/n> - set accountability of student; y if they are and n otherwise
● c <course> - notes that student passed or satisfied <course> course

Output
The output consists of blocks of lines, with each block denoting the corresponding𝑇
student in the input. Each block should start with a line containing the text 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 #𝑡:
where is the serial of the student starting from 1. The next line then contains the text𝑡
Record for SN <sn> where <sn> is the student number of the corresponding student
as a 9-digit number. Then, the next four lines shall be indented four spaces from the
leftmost part and should display the following in order.

● Is eligible? <YES/NO>

○ Replace <YES/NO> with YES if the student is eligible and NO otherwise
● Is accountable? <YES/NO>

○ Replace <YES/NO> with YES if the student is accountable and NO otherwise
● Unsatisfied GE2017 Courses:
● <courses>

○ Space-separated list of core GE 2017 courses that the student has not yet
passed, or NONE if everything is satisfied

○ The exact list of courses assuming that the student has not yet passed any
course GE 2017 course is as follows:

■ ARTS1 FIL40 KAS1 PHILO1 ENG13/SPEECH30 STS1/DRMAPS
SOCSCI2/SOCSCI1

■ Relevant courses are deleted from the above list the student has
passed those

○ Courses are written in all uppercase letters

Please see the sample output for more details.

Constraints
Input Constraints
𝑇 ≤ 10
sn ; sn ;∈ 𝑍 ∈ (0, 1 0000 00000] |𝑠𝑛| = 9
n_cmd ≤ 50
cmd d, a, c∈ { }

CoE 164 2s2324 W02 SE | Page 7 of 17

arg is always a string within the set [a-zA-Z0-9_]. This includes the <course> and
<y/n> arguments in a command.

You can assume that all of the inputs are well-formed and are always provided within these
constraints. You are not required to handle any errors.

Functional Constraints
You are required to create and use the following structs:

● StudentEnrollInfo - struct representing an enrollment information of a
student

○ sn: u64 - 9-digit student number
○ is_eligible: bool - whether the student is eligible
○ has_accountables: bool - whether the student has accountables
○ has_taken_ge2017: [bool; 10] - each element represents a GE 2017

course; true if the student has passed or satisfied the corresponding
course

■ Each element corresponds to the following courses in the following
order: ARTS1 FIL40 KAS1 PHILO1 ENG13 SPEECH30 STS1
DRMAPS SOCSCI2 SOCSCI1

You are required to have the following function signatures, their arguments in order, and
their return values:

● StudentEnrollInfo::new() - initialize a new StudentEnrollInfo struct
with default values

○ Arguments
■ None

○ Return value - StudentEnrollInfo representing a "default" student that is
not eligible and has accountabilities, and has taken no GE 2017 course

● StudentEnrollInfo::check_ge2017() - check whether the entered satisfied
course is part of GE 2017

○ Arguments
■ &mut self: &mut self - the "self" instance of the struct
■ course: String - the course to check that has been satisfied; it

can not be part of GE 2017
○ Return value - bool representing whether the checklist of GE 2017 courses

of the student should be updated
○ Additional constraints

■ self.has_taken_ge2017 should be updated if ge is a GE 2017
course

● StudentEnrollInfo::print_unsatisfied_ge2017() - print the list of
unsatisfied GE 2017 courses to the standard output

○ Arguments
■ &self: &self - the "self" instance of the struct

CoE 164 2s2324 W02 SE | Page 8 of 17

○ Return value - bool representing whether the GE 2017 course checklist is
satisfied

○ Additional constraints
■ Does not print a newline after this function ends

● main() - entry point to the program
○ Arguments

■ None
○ Return value

■ None
○ Additional constraints

■ Input and output parsing should be done here

Failure to follow these functional constraints will result in a score of zero in this assessment.

Sample Input/Output

Sample Input 1:
1
4 200345938
e y
a y
c drmaps
c eng13

Sample Output 1:
Student #1:
Record for SN 200345938

Is eligible? YES
Is accountable? YES
Unsatisfied GE2017 Courses:
ARTS1 FIL40 KAS1 PHILO1 SOCSCI2/SOCSCI1

Sample Input 2:
2
5 200530495
c kas1
e n
a y
c philo1
a n
0 201134162

Sample Output 2:
Student #1:
Record for SN 200530495

Is eligible? YES
Is accountable? NO
Unsatisfied GE2017 Courses:
ARTS1 FIL40 ENG13/SPEECH30 STS1/DRMAPS SOCSCI2/SOCSCI1

CoE 164 2s2324 W02 SE | Page 9 of 17

Student #2:
Record for SN 201134162

Is eligible? NO
Is accountable? YES
Unsatisfied GE2017 Courses:
ARTS1 FIL40 KAS1 PHILO1 ENG13/SPEECH30 STS1/DRMAPS

SOCSCI2/SOCSCI1

Steps
1. Write your program in Rust. Compile and make sure that there are no syntax errors.
2. Make sure to accept input via standard input and print your output via standard

output. For example, you can write your inputs into a text file named in_pub.txt
and the expected and correct outputs into another text file named
out_pub_ans.txt. If the compiled program is named wa, and you want the
printed output to be saved into a file named out_pub.txt, you can execute the
following command from the following terminals to run it:

Windows (Powershell): cat in_pub.txt | ./wa.exe | Out-File
out_pub.txt

Linux/macOS (bash, zsh): ./wa < in_pub.txt > out_pub.txt

Then, compare the program output with the reference output by executing the
following commands:

Windows (Powershell): Compare-Object (gc out_pub.txt) (gc
out_pub_ans.txt)

Linux/macOS (bash, zsh): diff out_pub.txt out_pub_ans.txt

3. Submit a copy of the source code to the Week 02B submission bin. Make sure that
you attach one (1) file in the bin containing the Rust source code with a .rs
extension (preferably named w02b.rs). Please do not send compressed files!

CoE 164 2s2324 W02 SE | Page 10 of 17

https://uvle.upd.edu.ph/mod/assign/view.php?id=617534

SE Week 02C
This assessment will let you be familiar with structs, enums, impl, and error handling in
Rust.

This is worth 30% of your grade for this week

Problem Statement
Tara shoppEEEng!

An intelligent grocery store, "grocerEEE store," has
just opened in your neighborhood, and they are hiring
a Rust programmer to develop their smart cart system.
Curious about the system, you take a visit to the store
and interview their development team.

The development team revealed that the system can
automatically detect the shopper's action and make a
log file. The system can also show the current items in the cart by pressing an on-board
cart button; the shown items, however, are abstracted according to their item type.
Furthermore, to enhance customer experience, they added a budget tracker feature to
ensure they stay within their allotted allowance. The physical limitations of the cart were
also considered in their system design. When an item is added, the system indicates if the
current items exceed the cart's weight capacity, which is around 12.0 kg. Moreover, the cart
can only accommodate up to 10 items to ensure the cart’s space is not completely
crammed.

With this, the development team deemed that their system should be memory-safe;
however, none had sufficient proficiency in Rust. Luckily, you have the knowledge to code1

in Rust and offer your services to them. As such, your task is to develop their system in
Rust, which generates a log file based on the user's action. Furthermore, you noticed that
sometimes the cart’s sensor provides gibberish input to the program, i.e., the command or
number is not interpreted correctly. With this, you will also implement error-handling
schemes to make the system more robust.

1 Hopefully…😄

CoE 164 2s2324 W02 SE | Page 11 of 17

Input
The input starts with stating the user’s allotted budget . It will then be followed by a
series of lines as indicated by the user. In each line, the following commands can be
executed:

● add <grocery_item> <price> <weight>

○ Adds the specified grocery_item to the cart. The added item will then be
abstracted according to its ItemType as shown in the table below.

grocery_item ItemType

coke, sprite, royal Beverage

bleach, soap Cleaners

battery, bulb Electronics

banana, mango, strawberries Fruits

beef, chicken, pork Meat

● remove <grocery_item_number>

○ Removes the grocery_item at the specified index,
grocery_item_number, starting at 1 and ending at 10.

● show_info

○ Generates the content of the grocery cart, its current value, and the total
weight of the items.

If the input command generates an error to the system, the erroneous command is
disregarded and should not be counted as part of the commands.

CoE 164 2s2324 W02 SE | Page 12 of 17

https://www.codecogs.com/eqnedit.php?latex=B#0
https://www.codecogs.com/eqnedit.php?latex=T#0
https://www.codecogs.com/eqnedit.php?latex=T#0

Output
The output consists of lines indicating the response of the system for each
commands. Depending on the command, the system will generate the following response:

● add <grocery_item> <price> <weight>

○ If successfully added: [SYSTEM] Item successfully added!

○ If unsuccessful:
■ If the added item will cause an overbudget: [SYSTEM] Maximum

budget reached! Item unsuccessfully added.

■ If the added item exceeds the cart's weight limit: [SYSTEM]
Maximum weight reached! Item unsuccessfully added.

■ If the added item will exceed 10 cart items: [SYSTEM] Maximum
number of items reached! Item unsuccessfully
added.

○ Otherwise: [ERROR] <system_error>!

■ where system_error is the first error encountered which could be
one of the following:

● Item not classified - if not found in grocery_item
● Price error - if there is an error reading the price
● Weight error - if there is an error reading the weight

● remove <grocery_item_number>

○ If successfully removed: [SYSTEM] Item removed!

○ If there is no item to remove: [SYSTEM] No item removed!

○ Otherwise: [ERROR] Index does not exist!

● show_info

○ A series of strings will be generated as shown:
------GROCERY CART------
1: <ItemType>
2: <ItemType>
3: <ItemType>
...
n: <ItemType>
Total price: Php <current_value>
Total weight: <current_weight> kg

where n is the index of the last non-empty element in the cart, the
current_value is current price of the cart rounded down to two decimal
places, and current_weight is the current weight of the items rounded up
to two decimal places. If there are no items in the cart, it will simply display
the total price and weight of the cart.

● Any other unlisted command: [ERROR] Command not found!

CoE 164 2s2324 W02 SE | Page 13 of 17

https://www.codecogs.com/eqnedit.php?latex=R_%7Bi%7D#0
https://www.codecogs.com/eqnedit.php?latex=T_%7Bi%7D#0

Constraints
Input Constraints

, where

, where

, where

, where

, where

You are required to handle errors regarding system commands. To reiterate, if the system
encounters an error, the command is disregarded and not counted as part of the
commands. Note that and are always well-formed. You are not required to handle
any other errors not outlined in this problem statement.

Functional Constraints
You are required to create the following structs, enums, and impl:

● enum ItemType, which contains the five main variants of an item: Beverage,
Cleaners, Electronics, Fruits, and Meat. If an item does not belong to any of these
variants, indicate it as None.

● struct GroceryItem with fields item: ItemType, price: f64, and weight:
f64

● struct SmartCart with fields items: [GroceryItem; 10], max_budget: f64,
max_weight: f64, current_value: f64, current_weight: f64,
current_size: usize.

● impl SmartCart with methods and parameters:
○ fn new(max_budget: f64) -> SmartCart - initializes the cart
○ fn add_item(grocery_item: GroceryItem) - adds item to the cart
○ fn remove_item(index: usize) - removes item from the cart
○ fn show_info() - displays the contents of the cart

Failure to follow these functional constraints will result in a score of zero in this assessment.

CoE 164 2s2324 W02 SE | Page 14 of 17

https://www.codecogs.com/eqnedit.php?latex=0.0%20%5Cleq%20B%20%5Cleq%205000.00#0
https://www.codecogs.com/eqnedit.php?latex=B%20%5Cin%20%5Cmathbb%7BR%7D%5E%7B%2B%7D#0
https://www.codecogs.com/eqnedit.php?latex=0%20%3C%20T%20%5Cleq%2020#0
https://www.codecogs.com/eqnedit.php?latex=T%20%5Cin%20%5Cmathbb%7BZ%7D#0
https://www.codecogs.com/eqnedit.php?latex=T_%7Bi%7D%20%3D%20%5C%7B%5Ctexttt%7Badd%20%7D%20I%5C%2CP%5C%2CW%5C%2C%5Ctext%7B%2C%20%7D%5Ctexttt%7Bremove%7D%5C%2CN%5C%2C%5Ctext%7B%2C%20%7D%5Ctexttt%7Bshow%5C_info%7D%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BI%7D%20%3D%20%5C%7B%5Ctext%7Bcoke%2C%20sprite%2C%20royal%2C%20bleach%2C%20soap%2C%20battery%2C%20#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Ctext%7Bbulb%2C%20banana%2C%20mango%2C%20strawberries%2C%20beef%2C%20chicken%2C%20pork%7D%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=0%20%3C%20P%20%5Cleq%20750#0
https://www.codecogs.com/eqnedit.php?latex=P%20%5Cin%20%5Cmathbb%7BR%7D%5E%7B%2B%7D#0
https://www.codecogs.com/eqnedit.php?latex=0%20%3C%20W%20%5Cleq%2010#0
https://www.codecogs.com/eqnedit.php?latex=W%20%5Cin%20%5Cmathbb%7BR%7D%5E%7B%2B%7D#0
https://www.codecogs.com/eqnedit.php?latex=W_%7Bcart%2Cmax%7D%20%3D%2012.0%5C%2C%5Ctext%7Bkg%7D#0
https://www.codecogs.com/eqnedit.php?latex=0%20%3C%20N%20%5Cleq%2010#0
https://www.codecogs.com/eqnedit.php?latex=N%20%5Cin%20%5Cmathbb%7BZ%7D#0
https://www.codecogs.com/eqnedit.php?latex=T#0
https://www.codecogs.com/eqnedit.php?latex=B#0
https://www.codecogs.com/eqnedit.php?latex=T#0

Sample Input/Output

Sample Input 1:
1000.00
2
addd coke 150 0.5
add cok3 15O O.S
add coke 15O O.S
add coke 150 O.S
add coke 150 0.5
show_information
show_info

Sample Output 1:
[ERROR] Command not found!
[ERROR] Item not classified!
[ERROR] Price error!
[ERROR] Weight error!
[SYSTEM] Item successfully added!
[ERROR] Command not found!
------GROCERY CART------
1: Beverage
Total price: Php 150.00
Total weight: 0.50 kg

Sample Input 2:
750.50
11
show_info
remove 11
add pork 200 0.72
remov3 2
add battery 55 0.1
add sprite 70 B
add royal 70 0.1
add mango 400 2.0
show_info
remove 3
add soap 50 5.1
add calamansi 10 10
add banana 40.5 5
add banana 20.5 2.5
show_info

Sample Output 2:
------GROCERY CART------
Total price: Php 0.00

CoE 164 2s2324 W02 SE | Page 15 of 17

Total weight: 0.00 kg

[ERROR] Index does not exist!
[SYSTEM] Item successfully added!
[ERROR] Command not found!
[SYSTEM] Item successfully added!
[ERROR] Weight error!
[SYSTEM] Item successfully added!
[SYSTEM] Item successfully added!
------GROCERY CART------
1: Meat
2: Electronics
3: Beverage
4: Fruits
Total price: Php 725.00
Total weight: 2.92 kg

[SYSTEM] Item removed!
[SYSTEM] Item successfully added!
[ERROR] Item not classified!
[SYSTEM] Maximum weight reached! Item unsuccessfully added.
[SYSTEM] Item successfully added!
------GROCERY CART------
1: Meat
2: Electronics
3: Fruits
4: Cleaners
5: Fruits
Total price: Php 725.50
Total weight: 10.42 kg

CoE 164 2s2324 W02 SE | Page 16 of 17

Steps
1. Write your program in Rust. Compile and make sure that there are no syntax errors.
2. Make sure to accept input via standard input and print your output via standard

output. For example, you can write your inputs into a text file named in_pub.txt
and the expected and correct outputs into another text file named
out_pub_ans.txt. If the compiled program is named wa, and you want the
printed output to be saved into a file named out_pub.txt, you can execute the
following command from the following terminals to run it:

Windows (Powershell): cat in_pub.txt | ./wa.exe | Out-File
out_pub.txt

Linux/macOS (bash, zsh): ./wa < in_pub.txt > out_pub.txt

Then, compare the program output with the reference output by executing the
following commands:

Windows (Powershell): Compare-Object (gc out_pub.txt) (gc
out_pub_ans.txt)

Linux/macOS (bash, zsh): diff out_pub.txt out_pub_ans.txt

3. Submit a copy of the source code to the Week 02C submission bin. Make sure that
you attach one (1) file in the bin containing the Rust source code with a .rs
extension (preferably named w02c.rs). Please do not send compressed files!

CoE 164 2s2324 W02 SE | Page 17 of 17

https://uvle.upd.edu.ph/mod/assign/view.php?id=617535

