
CoE 164
Computing Platforms

01c: Rust Functions and Control Statements

Exam
ple

2

A statement performs some action and does not return a value. On the
other hand, an expression evaluates to return some value.

Note that expressions do not have a semicolon at the end. Statements
do.

STATEMENTS AND EXPRESSIONS

let x = 7; // statement
let y = 2 + 3; // RHS is an expression

let r = {
 let z = x + y;
 z - 2
};

Exam
ple

3

Variables have a lifetime or scope - that is, it is valid only up to a certain
point in the program. Usually, a scope is defined within curly braces.

If a variable is defined or "captured" within a scope, it is said to have
become valid. Conversely, if it goes out of scope, it is said to have
become invalid.

VARIABLE SCOPE

{
 let v = 3; // v is valid here
 // do something…
}

// v is no longer valid here

Example

4

Variables can be redeclared later
on in the code using the let
keyword.

On the other hand, variable names
can be reused in inner scopes. This
overshadows any same variable
names in outer scopes. When the
scope ends, any variable values are
reverted to their initial ones before
the scope started.

VARIABLE SHADOWING

let v = 5;
let v = v + 1;

// v = 6
println!("Old v is {v}");

{ // scope start
 let v = v + 3;

 // v = 9
 println!("v inner is {v}");
} // scope end

// v = 6
println!("New v is {v}");

5

FUNCTIONS

A function is a subroutine in a
program. It can be called with
some parameters to run a certain
task or process the parameters
in some way.

Exam
ple

6

Declare a function by writing the fn keyword followed by the name.
Contents are placed inside curly braces.

Functions are named using snake case - all words should be in lowercase
and possibly separated by underscores.

FUNCTIONS: BASICS

fn print_hello() {
 println!("Hello world!");
}

print_hello();

Exam
ple

7

Function parameters are defined inside the parentheses after the name.
Each parameter should be annotated with a type and each one should be
separated with a comma.

FUNCTIONS: PARAMETERS

fn print_pairs(a: i64, b: i64) {
 println!("{}, {}", a, b);
}

print_pairs(4, 5);

Exam
ple

8

A function can be annotated to return a value by writing an arrow and the
data type of the return value after the function signature.

A function can return an explicit value using the return keyword, or
implicitly return the last expression. Note the lack of semicolon for the
implicit return.

FUNCTIONS: RETURN VALUES

fn add_me(a: i64, b: i64) -> i64 {
 return a + b;
}

fn add_me_v2(a: i64, b: i64) -> i64 {
 a + b
}

Exam
ple

9

A function can return "multiple data" by returning a tuple with those
values.

FUNCTIONS: RETURN VALUES

fn add_me(a: i64, b: i64) -> (i64, i64) {
 return (a + 3, b + 7);
}

Exam
ple

10

The main entry point to a Rust program is through a function named
main(). It does not have any parameters. Compiled executables will start
by finding this function and executing statements inside of it.

FUNCTIONS: MAIN

fn main() {
 println!("Hello world!");
}

Example

11

It is possible to write function
definitions within functions. It is
usually used when the inner
function will not be used anywhere
outside of it.

FUNCTIONS: NESTED

fn add_me(a: i64, b: i64) -> (i64, i64)
{
 fn print_first(a: i64) {
 println!("print_first {a}");
 }

 print_first(a);
 print_first(b);

 return (a + 3, b + 7);
}

12

CONTROL
STATEMENTS
Rust has the following basic
control statements:

◦ if/else if statements
◦ loop, while, and for

loops

Example

13

Conditional statements in Rust are
built using the keywords if, else
if, and else.

Any combination of if, if-else if, and
if-else statements are valid in Rust.

CONTROL: IF

if num == 3 {
 println!("This is a three");
}
else if num == 5 {
 println!("This is a five");
}
else {
 println!("This is {}", num);
}

Example

14

Conditional statements can return
expressions that can consequently
be assigned to a variable. Note that
each block should implicitly return
some value and all condition cases
are enumerated.

CONTROL: IF ASSIGNMENT

let z = if num == 3 {
 "three"
}
else if num == 5 {
 "five"
}
else {
 "unknown"
};

Exam
ple

15

A group of statements can be set to run infinitely many times by
encapsulating them in a loop block.

CONTROL: INFINITE LOOP

// Print forever
loop {
 println!("hello!");
}

Example

16

We can break out of a loop using
the break keyword.

We can skip execution of the rest of
the loop and restart it from the top
using the continue keyword.

CONTROL: LOOP BREAKS

let mut z = 0;

loop {
 if z > 3 {
 break;
 }

 z += 1;

 if z % 2 == 0 {
 continue;
 }

 println!("hi! {z}");
}

Example

17

A loop block can return
expressions that can consequently
be assigned to a variable. Note that
the loop should terminate and its
return value provided as a break
statement.

CONTROL: LOOP ASSIGNMENT

let mut i = 0;
let n = 5;
let z = loop {
 i += 1;

 if i >= n {
 break i;
 }
};

Example

18

We can label loops by specifying a
loop label. The label is placed
beside the loop keyword.

We can break or continue
relative to that loop label by writing
the label name after the relevant
keyword.

CONTROL: LOOP LABELS

let n = 3;
let m = 5;
let mut ans = 0;

'out: loop {
 loop {
 ans += m * n;

 if ans > 1000 {
 break 'out;
 }

 continue;
 }

 m += 1;
}

Exam
ple

19

A while loop can be used if looping through a statement while checking
whether a certain condition holds is needed.

CONTROL: WHILE LOOP

let z = 0;

while z <= 3 {
 z += 1;
 println("hi! {z}");
}

Example

20

A for loop can be used if there is a
collection of data with a fixed size
to iterate through.

We can loop through a range of
integers by using two dots (..) in
between the two ends of the range.
The end range is not included in the
loop.

CONTROL: FOR LOOP

Example

let a = [7, 1, 3];
let mut ans = 0;

for each_elm in a {
 ans += each_elm;
}

let n = 5;
let mut tri_num = 0;

for i in 0..n {
 tri_num += i;
}

Exam
ple

21

A range is denoted by a start and end points with two dots (..) in
between. In this case, the end point is not included in the range.

For a range to include the end point, an equal sign (..=) should be placed
after the two dots.

CONTROL: RANGES

let r = 3;
let x = 0..10; // 0 to 9 inclusive
let z = 0..=r; // 0 to 3 inclusive
let stwo = (12..24).step_by(2); // skip by 2
let revved = (0..5).rev(); // 4 to 0 inclusive

Example

22

Ranges can omit the start and end
points. However, only ranges that
have a starting point can be used in
for loops.

CONTROL: RANGES

for x in 0..5 {
 println!("{x}");
}

for x in 3.. {
 println!("{x}");

 if x >= 10 {
 break;
 }
}

// Compile error!
for x in ..5 {
 break;
}

CoE 164
Computing Platforms

01c: Rust Control Statements and Functions

