
CoE 164
Computing Platforms

01a: About Rust

2

RUST PROGRAMMING
LANGUAGE

The Rust programming language
is a high-level language emphasizing
performance, type-safety, and
concurrency.

Rust is popular in systems
programming but can be used as a
general-purpose programming
language.

3

RUST: HISTORY

Rust was developed in 2006 at
Mozilla Research and appeared to
the public in 2010. Since 2021, it is
now managed by the Rust
Foundation.

Since then, Rust has enjoyed
considerable usage among
programmers who wanted to write
memory-safe code.

4

RUST: FEATURES

Memory-safe

Rust enforces checks at
compile-time to ensure
that each memory
manipulation is done
deliberately and properly.

Concurrency

Writing concurrent code is
much easier and safer.
Data temporality is much
more predictable.

Performance

Because of a lack of
runtime checks, Rust
programs can be fast and
memory efficient
compared to other
programs.

PLAYGROUND

1. Visit the Rust language playground at
https://play.rust-lang.org

2. Write your program, noting that Rust will start the
program by executing the main() function.

3. Click “Run” to compile and run the program.

5

https://play.rust-lang.org

INSTALLATION (WINDOWS)

1. Download and install the Visual Studio C++ build tools
before proceeding.
a. Install the "MSBuild Tools" and "Desktop

development with C++" components.
2. Visit the Rust language website at

https://www.rust-lang.org
3. Find the links leading to downloading rustup-init

and download it into your computer.
4. Run the installer and follow the onscreen instructions.
5. Note that the installer is command-line based, so you

need to input the selected option and press “Enter” to
proceed. When in doubt, select the “default” setting.

6

https://visualstudio.microsoft.com/visual-cpp-build-tools/
https://www.rust-lang.org

INSTALLATION (LINUX/MACOS)

1. Open your preferred terminal. Go to your “Desktop” or
“Downloads” folder - preferably where you will place
the rustup installation script.

2. Type the following to download the installation script.
wget https://sh.rustup.rs > rustup.sh

3. Type the following to run the installer
sh ./rustup.sh
and follow the onscreen instructions.

4. Note that the installer is command-line based, so you
need to input the selected option and press “Enter” to
proceed. When in doubt, select the “default” setting.

7

INSTALLATION TEST

Open your terminal and type the following to view the version of
rustc and cargo that you have. A version string should appear.

rustc --version
cargo –-version

8

CONSIDER…

9

… a program that takes in two
space-separated integers and
adds them together.

10

ADDER: INPUT

use std::io;

fn main() {
 println!("Please input two \
 space-separated integers");

 // Get a line
 let mut str_in = String::new();
 io::stdin()
 .read_line(&mutstr_in)
 .expect("Failed to read input");

 // Split into two
 let str_in_split: Vec <&str> = str_in
 .split(' ')
 .collect();

Example

11

ADDER: INPUT + ROUTINE

 if str_in_split.len() != 2 {
 panic!("Input does not contain two integers!");
 }

 let a: u64 = str_in_split[0]
 .trim()
 .parse()
 .expect("Input is not an integer!");

 let b: u64 = str_in_split[1]
 .trim()
 .parse()
 .expect("Input is not an integer!");

 let ans = a + b;
 println!("Calculation: {a} + {b} = {c}");
}

Example

RUNNING RUST CODE

1. Open your preferred program editor. Something that has syntax
highlighting is required.

2. Copy and paste the adder code to the editor and save it as
adder.rs somewhere in your computer.

3. Open the terminal and go to the directory where adder.rs is
located.

4. Type the following in the terminal to compile the program
rustc adder.rs

5. You should have an executable file named adder in that same
directory. Run it by typing the following in the terminal
adder.exe # Windows
./adder # Linux/MacOS

12

ADDER: COMPILE ERRORS

Compiling the previous code as is will yield compile errors. Rust will
inform you where and what the errors are and may hint you on how
to fix them.

As an exercise, try to fix the code using the messages below.

13

14

FIXED ADDER: INPUT

use std::io;

fn main() {
 println!("Please input two \
 space-separated integers");

 // Get a line
 let mut str_in = String::new();
 io::stdin()
 .read_line(&mut str_in)
 .expect("Failed to read input");

 // Split into two
 let str_in_split: Vec <&str> = str_in
 .split(' ')
 .collect();

Example

15

FIXED ADDER: INPUT + ROUTINE

 if str_in_split.len() != 2 {
 panic!("Input does not contain two integers!");
 }

 let a: u64 = str_in_split[0]
 .trim()
 .parse()
 .expect("Input is not an integer!");

 let b: u64 = str_in_split[1]
 .trim()
 .parse()
 .expect("Input is not an integer!");

 let ans = a + b;
 println!("Calculation: {a} + {b} = {ans}");
}

Example

ADDER: COMPILED

Compiling the previous code will yield nothing in the terminal.
However, there will be an .exe (Windows) or ABI file
(Linux/MacOS) generated.

16

Executable

ADDER: COMPILE WARNINGS

Sometimes compiling will result to compile warnings. It will still
generate an executable file, but Rust will inform you where it thinks
you should action on it.

The Rust compiler below complains about an unused variable in the
program.

17

18

RESOURCES

◦ The Rust Book

https://doc.rust-lang.org/stable/book

CoE 164
Computing Platforms

01a: About Rust

