CoE 164

Computing Platforms

Machine Exercise 01

Academic Period: 2nd Semester AY 2020-2021
Workload: 3 hours

Synopsis: Run-length message decoding
Submission Platform: Google Forms

Description

It was 1995 in the Philippines, and dial-up internet has just made its way into the common
folk. With around 64 kbps internet, you can now access BBS and ICQ to read information
and chat with people all over the world. You use a command line to access these platforms
and you have to pay for your internet usage by the hour. On the other hand, an unlimited
128 kbps plan would cost you around 10k per month! Since you are not rich enough to
pay for that monthly plan, you can only afford to pay for dial-up cards, which enable you to
use a cumulative of 20 hours of internet connectivity. Additionally, you can only use up to
100 MB of data transfers every hour, with such a limit called the data cap. Once exceeded,
the internet connection speed will be throttled down to be unusable until the next hour.

As a person with a lot of friends across the country and the world, you keep constant
communication with them through ICQ. However, these constraints prove to be, well, too
restrictive. You set out to maximize the data cap imposed on you every hour by formulating
your own scheme to compress the messages sent through this platform to you.

You opted for a simple compression scheme named run-length encoding, which encodes
the character and the amount of times it appears consecutively in a message. Each

CoE 164 | Page 1 of 3



character in the message is first read, and an accumulator counts the number of times a
character is encountered consecutively. Once a new character, or no same character has
been encountered, the amount in the accumulator and the characters themselves are
printed in that order. Running the algorithm across the whole message results in a
compressed message. For example, if there is a message “aabc”, then its compressed
equivalent would be “2abc”. Notice that the number “2” is written before the character (a)
that has that amount of repetitions.

All looks well and easy under the simple world of ASCII, where characters can be encoded
as an index of 7 bits, and the characters there consist only of the usual alphabet letters,
numbers, and other symbols found in English. However, due to your friends being
international, they for sure will use their own writing systems to send messages. Fortunately,
the UTF-8 standard has just been introduced more than a year ago, in which characters can
be encoded as an index between one and four bytes on a character plane. Also, to test
whether your compression algorithm can truly save you some data, you also want to know
the compression ratio, which can be interpreted as the number of times the data has been

len(uncompressed)
len(compressed)

wanted to know the rounded-off integer value of the compression ratio for each message.

reduced. In terms of formulas, it would be ¢ = . To simplify things, you just

You have already finished the encoding algorithm and are now going to write a program that
will decode the compressed messages. As these programs will be sent out to your friends,
you would like to make sure that this program can decompress correctly and efficiently
given that you need to be able to handle UTF-8 characters.

Input
The input to your program starts with the number T on a line indicating the number of
messages to expect. Then, each T compressed messages m, are written on each line i.

Output

The output should consist of T lines, with each line i consisting of the compression ratio c
as a rounded-off nonnegative integer, and the uncompressed message Mi.

Example
Input

5

10a6b5c
abcdefabcdef
2¢a2¢ah2js
nna2aba3dB
Z8N7Li5H

Output

CoE 164 | Page 2 of 3



3 aaaaaaaaaabbbbbbccccc
1 abcdefabcdef

1 &éadéahijs

1 nhaaabaBBiB

IENNNMNMNMNMNNGHDHDHH

Additional Description/Requirements
Your program can only support the following specifications:

T < 100000
1 < len(m) < 100000
1 < len(M) < 1000000

Vx € M Um, x € {UTF — 8}

The UTF-8 set is the set of (less than) 1112064 codepoints that correspond to a single
character. However, we limit ourselves to those characters commonly used by your friends,
so it will be way smaller than that. Whitespaces are also included in UTF-8!

Writing a journal for this program hasn’t crossed your mind the slightest. However, because
you believe that you can easily forget things and there may be a chance in the future when
you revisit the code, you try your best to write self-documenting code. This means that,
among other things, you write your variables throughout your code to more clearly label
their purposes and add comments to code that can be hard to understand.

Having been involved in the internet scene, you had connections with the Wayback
Machine™, and was informed that the platform would be released in 1996. However, you
appear to also have access to the Future Web Archive™, where you can see the future of
the internet. Because of that, you can use any programming language of the future to
develop your decompression program. Also, to ensure the quality of your program, you
have decided to send your program (as a single source code file; in TXT if the system does
not support the file extension) through this futuristic platform named Google Forms, in
which a third-party from the future will check your code, and resend it with an assessment.

Grading Rubric

5% Input handling - able to read the input specifications and ASCII characters
5% Output handling - able to write ASCII characters

10% Input handling - able to read UTF-8 characters

10% Output handling - able to write UTF-8 characters

25% Algorithm to compute the integer compression ratio

45% Algorithm to decode the compressed message

5% Self-documenting code (optional)

CoE 164 | Page 3 of 3



